Hostname: page-component-68c7f8b79f-xmwfq Total loading time: 0 Render date: 2025-12-18T03:19:54.941Z Has data issue: false hasContentIssue false

On the stability and dynamics of flows past bubble-shaped rigid bluff bodies

Published online by Cambridge University Press:  12 December 2025

Ragavendiran Muniyammal*
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Kanpur , Kanpur 208016, India
Shyam Sunder Gopalakrishnan*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
Sanjay Kumar*
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Kanpur , Kanpur 208016, India
Alakesh Chandra Mandal*
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Kanpur , Kanpur 208016, India
*
Corresponding authors: Ragavendiran Muniyammal, ragavcandela@gmail.com; Shyam Sunder Gopalakrishnan, shyamsg@iitk.ac.in; Sanjay Kumar, skmr@iitk.ac.in; Alakesh Chandra Mandal, alakeshm@iitk.ac.in
Corresponding authors: Ragavendiran Muniyammal, ragavcandela@gmail.com; Shyam Sunder Gopalakrishnan, shyamsg@iitk.ac.in; Sanjay Kumar, skmr@iitk.ac.in; Alakesh Chandra Mandal, alakeshm@iitk.ac.in
Corresponding authors: Ragavendiran Muniyammal, ragavcandela@gmail.com; Shyam Sunder Gopalakrishnan, shyamsg@iitk.ac.in; Sanjay Kumar, skmr@iitk.ac.in; Alakesh Chandra Mandal, alakeshm@iitk.ac.in
Corresponding authors: Ragavendiran Muniyammal, ragavcandela@gmail.com; Shyam Sunder Gopalakrishnan, shyamsg@iitk.ac.in; Sanjay Kumar, skmr@iitk.ac.in; Alakesh Chandra Mandal, alakeshm@iitk.ac.in

Abstract

The stability and dynamics of flows past axisymmetric bubble-shaped rigid bluff bodies have been numerically and experimentally investigated. Motivated by the shapes of bubbles rising in quiescent liquids the bluff bodies were modelled as spherical and elliptical caps. The geometries are characterised by their aspect ratio, $\chi$, defined as the ratio of the height of the bubble to the base radius, which is varied from $0.2$ to $2.0$. Linear stability analyses were carried out on axisymmetric base flow fields subject to three-dimensional perturbations. As observed in earlier studies on bluff-body wakes, the primary bifurcation is stationary, followed by an oscillatory secondary bifurcation, with the leading global mode corresponding to azimuthal wavenumber $m = 1$. The domain of stability is found to increase with aspect ratio for both of the geometries considered in the present study. The critical Reynolds number corresponding to the primary bifurcation is found to be independent of the aspect ratio when re-scaled using the extent of the recirculation region and the maximum of the reverse-flow velocity as the length and velocity scales, respectively. The wake flow features were characterised experimentally using laser-induced fluorescence and particle-image-velocimetry techniques. It is observed that the flow has a planar symmetry following the primary bifurcation, which is retained beyond the secondary bifurcation. The experimentally measured wavelengths and frequencies are in excellent agreement with the results obtained from global stability analyses. These observations were further corroborated using direct numerical simulations of the three-dimensional flow field. The critical Reynolds numbers corresponding to both primary and secondary bifurcations, and the dominant modes obtained using proper orthogonal decomposition of the experimentally measured velocity fields, are found to agree well with the global mode shapes and numerically computed flow fields.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aniffa, S.M., Caesar, V.S., Dabaria, V. & Mandal, A.C. 2023 Characteristics of geometry-and pressure-induced laminar separation bubbles at an enhanced level of free-stream turbulence. J. Fluid Mech. 957, A19.10.1017/jfm.2023.53CrossRefGoogle Scholar
Balamurugan, G. & Mandal, A.C. 2017 Experiments on localized secondary instability in bypass boundary layer transition. J. Fluid Mech. 817, 217263.10.1017/jfm.2017.92CrossRefGoogle Scholar
Berkooz, G., Holmes, P. & Lumley, J.L. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25 (1), 539575.10.1146/annurev.fl.25.010193.002543CrossRefGoogle Scholar
Bhattacharyya, S., Khan, I.H., Verma, S., Kumar, S. & Poddar, K. 2022 Experimental investigation of three-dimensional modes in the wake of a rotationally oscillating cylinder. J. Fluid Mech. 950, A10.10.1017/jfm.2022.792CrossRefGoogle Scholar
Bobinski, T., Goujon-Durand, S. & Wesfreid, J.E. 2014 Instabilities in the wake of a circular disk. Phys. Rev. E 89 (5), 053021.10.1103/PhysRevE.89.053021CrossRefGoogle ScholarPubMed
Bohorquez, P., Sanmiguel-Rojas, E., Sevilla, A., Jiménez-González, J.I. & Martínez-Bazán, C. 2011 Stability and dynamics of the laminar wake past a slender blunt-based axisymmetric body. J. Fluid Mech. 676, 110144.10.1017/jfm.2011.35CrossRefGoogle Scholar
Bonnefis, P., Sierra-Ausin, J., Fabre, D. & Magnaudet, J. 2024 Path instability of deformable bubbles rising in Newtonian liquids: a linear study. J. Fluid Mech. 980, A19.10.1017/jfm.2024.19CrossRefGoogle Scholar
Cano-Lozano, J.C., Tchoufag, J., Magnaudet, J. & Martínez-Bazán, C. 2016 A global stability approach to wake and path instabilities of nearly oblate spheroidal rising bubbles. Phys. Fluids 28 (1), 014102.10.1063/1.4939703CrossRefGoogle Scholar
Chiarini, A., Quadrio, M. & Auteri, F. 2022 A new scaling for the flow instability past symmetric bluff bodies. J. Fluid Mech. 936, R2.10.1017/jfm.2022.99CrossRefGoogle Scholar
Chomaz, J.-M. 2005 Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu. Rev. Fluid Mech. 37, 357392.10.1146/annurev.fluid.37.061903.175810CrossRefGoogle Scholar
Chrust, M., Bouchet, G. & Dušek, J.A.N. 2010 Parametric study of the transition in the wake of oblate spheroids and flat cylinders. J. Fluid Mech. 665, 199208.10.1017/S0022112010004878CrossRefGoogle Scholar
Constantinescu, G. & Squires, K. 2000 LES and DES investigations of turbulent flow over a sphere. In 38th Aerospace Sciences Meeting and Exhibit, pp. 540. American Institute of Aeronautics and Astronautics.10.2514/6.2000-540CrossRefGoogle Scholar
Dutta, D., Kanshana, I., Gopalakrishnan, S.S. & Mandal, A.C. 2022 Experimental studies on the frequency selection in flat plate wakes: mean-flow stability analyses and low-dimensional modeling. Phys. Rev. Fluids 7 (4), 044102.10.1103/PhysRevFluids.7.044102CrossRefGoogle Scholar
Ellingsen, K. & Risso, F. 2001 On the rise of an ellipsoidal bubble in water: oscillatory paths and liquid-induced velocity. J. Fluid Mech. 440, 235268.10.1017/S0022112001004761CrossRefGoogle Scholar
Ern, P., Risso, F., Fabre, D. & Magnaudet, J. 2012 Wake-induced oscillatory paths of bodies freely rising or falling in fluids. Annu. Rev. Fluid Mech. 44 (1), 97121.10.1146/annurev-fluid-120710-101250CrossRefGoogle Scholar
Fabre, D., Auguste, F. & Magnaudet, J. 2008 Bifurcations and symmetry breaking in the wake of axisymmetric bodies. Phys. Fluids 20 (5), 051702.10.1063/1.2909609CrossRefGoogle Scholar
Fernandes, P.C., Risso, F., Ern, P. & Magnaudet, J. 2007 Oscillatory motion and wake instability of freely rising axisymmetric bodies. J. Fluid Mech. 573, 479502.10.1017/S0022112006003685CrossRefGoogle Scholar
Ghidersa, B. & Dušek, J.A.N. 2000 Breaking of axisymmetry and onset of unsteadiness in the wake of a sphere. J. Fluid Mech. 423, 3369.10.1017/S0022112000001701CrossRefGoogle Scholar
Gopalakrishnan, S.S. 2014 Dynamics and stability of flow through abdominal aortic aneurysms. Theses, Université Claude Bernard.Google Scholar
Gopalakrishnan, S.S., Pier, B. & Biesheuvel, A. 2014 Global stability analysis of flow through a fusiform aneurysm: steady flows. J. Fluid Mech. 752, 90106.10.1017/jfm.2014.292CrossRefGoogle Scholar
Gumowski, K., Miedzik, J., Goujon-Durand, S., Jenffer, P. & Wesfreid, J.E. 2008 Transition to a time-dependent state of fluid flow in the wake of a sphere. Phys. Rev. E 77 (5), 055308.10.1103/PhysRevE.77.055308CrossRefGoogle ScholarPubMed
Hammond, D.A. & Redekopp, L.G. 1997 Global dynamics of symmetric and asymmetric wakes. J. Fluid Mech. 331, 231260.10.1017/S0022112096003825CrossRefGoogle Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.10.1017/S0022112095000462CrossRefGoogle Scholar
Jiménez-González, J.I., Manglano-Villamarín, C. & Coenen, W. 2019 The role of geometry on the global instability of wakes behind streamwise rotating axisymmetric bodies. Eur. J. Mech.-B/Fluids 76, 205222.10.1016/j.euromechflu.2019.03.003CrossRefGoogle Scholar
Johnson, T.A. & Patel, V.C. 1999 Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech. 378, 1970.10.1017/S0022112098003206CrossRefGoogle Scholar
Khan, I.H., Sunil, P., Bhattacharyya, S., Yadav, R., Poddar, K. & Kumar, S. 2023 Flow past two rotationally oscillating cylinders. J. Fluid Mech. 969, A16.10.1017/jfm.2023.549CrossRefGoogle Scholar
Khan, M.H., Khan, H.H., Sharma, A. & Agrawal, A. 2020 Laminar vortex shedding in the wake of a cube. J. Fluids Engng 142 (11), 111301.10.1115/1.4047674CrossRefGoogle Scholar
Kim, D. & Choi, H. 2002 Laminar flow past a sphere rotating in the streamwise direction. J. Fluid Mech. 461, 365386.10.1017/S0022112002008509CrossRefGoogle Scholar
Kim, D. & Choi, H. 2003 Laminar flow past a hemisphere. Phys. Fluids 15 (8), 24572460.10.1063/1.1589485CrossRefGoogle Scholar
Landau, L.D. 1944 On the problem of turbulence. Dokl. Akad. Nauk USSR 44, 311.Google Scholar
Magarvey, R.H. & Bishop, R.L. 1961 a Transition ranges for three-dimensional wakes. Can. J. Phys. 39 (10), 14181422.10.1139/p61-169CrossRefGoogle Scholar
Magarvey, R.H. & Bishop, R.L. 1961 b Wakes in liquid-liquid systems. Phys. Fluids 4 (7), 800805.10.1063/1.1706409CrossRefGoogle Scholar
Magarvey, R.H. & MacLatchy, C.S. 1965 Vortices in sphere wakes. Can. J. Phys. 43 (9), 16491656.10.1139/p65-154CrossRefGoogle Scholar
Magnaudet, J. & Mougin, G. 2007 Wake instability of a fixed spheroidal bubble. J. Fluid Mech. 572, 311337.10.1017/S0022112006003442CrossRefGoogle Scholar
Mandal, A.C., Venkatakrishnan, L. & Dey, J. 2010 A study on boundary-layer transition induced by free-stream turbulence. J. Fluid Mech. 660, 114146.10.1017/S0022112010002600CrossRefGoogle Scholar
Marquet, O., Sipp, D. & Jacquin, L. 2008 Sensitivity analysis and passive control of cylinder flow. J. Fluid Mech. 615, 221252.10.1017/S0022112008003662CrossRefGoogle Scholar
Meliga, P., Chomaz, J.-M. & Sipp, D. 2009 Unsteadiness in the wake of disks and spheres: instability, receptivity and control using direct and adjoint global stability analyses. J. Fluids Struct. 25 (4), 601616.10.1016/j.jfluidstructs.2009.04.004CrossRefGoogle Scholar
Mittal, R. 1999 A Fourier–Chebyshev spectral collocation method for simulating flow past spheres and spheroids. Intl J. Numer. Meth. Fluids 30 (7), 921937.10.1002/(SICI)1097-0363(19990815)30:7<921::AID-FLD875>3.0.CO;2-33.0.CO;2-3>CrossRefGoogle Scholar
Monkewitz, P.A. 1988 A note on vortex shedding from axisymmetric bluff bodies. J. Fluid Mech. 192, 561575.10.1017/S0022112088001983CrossRefGoogle Scholar
Mougin, G. & Magnaudet, J. 2001 Path instability of a rising bubble. Phys. Rev. Lett. 88 (1), 014502.10.1103/PhysRevLett.88.014502CrossRefGoogle ScholarPubMed
Muniyammal, R., Mandal, A.C. & Kumar, S. 2020 V0036: Dynamics of a rising air bubble through a liquid-liquid interface. In 73th Annual Meeting of the APS Division of Fluid Dynamics. American Physical Society.10.1103/APS.DFD.2020.GFM.V0036CrossRefGoogle Scholar
Nakamura, I. 1976 Steady wake behind a sphere. Phys. Fluids 19 (1), 58.10.1063/1.861328CrossRefGoogle Scholar
Natarajan, R. & Acrivos, A. 1993 The instability of the steady flow past spheres and disks. J. Fluid Mech. 254, 323344.10.1017/S0022112093002150CrossRefGoogle Scholar
Noack, B.R. & Eckelmann, H. 1994 A global stability analysis of the steady and periodic cylinder wake. J. Fluid Mech. 270, 297330.10.1017/S0022112094004283CrossRefGoogle Scholar
Ormières, D. & Provansal, M. 1999 Transition to turbulence in the wake of a sphere. Phys. Rev. Lett. 83 (1), 80.10.1103/PhysRevLett.83.80CrossRefGoogle Scholar
Pier, B. 2008 Local and global instabilities in the wake of a sphere. J. Fluid Mech. 603, 3961.10.1017/S0022112008000736CrossRefGoogle Scholar
Provansal, M., Mathis, C. & Boyer, L. 1987 Bénard-von Kármán instability: transient and forced regimes. J. Fluid Mech. 182, 122.10.1017/S0022112087002222CrossRefGoogle Scholar
Provansal, M., Schouveiler, L. & Leweke, T. 2004 From the double vortex street behind a cylinder to the wake of a sphere. Eur. J. Mech.-B/Fluids 23 (1), 6580.10.1016/j.euromechflu.2003.09.007CrossRefGoogle Scholar
Roos, F.W. & Willmarth, W.W. 1971 Some experimental results on sphere and disk drag. AIAA J. 9 (2), 285291.10.2514/3.6164CrossRefGoogle Scholar
Saha, A.K. 2004 Three-dimensional numerical simulations of the transition of flow past a cube. Phys. Fluids 16 (5), 16301646.10.1063/1.1688324CrossRefGoogle Scholar
Sanmiguel-Rojas, E., Jiménez-González, J.I., Bohorquez, P., Pawlak, G. & Martínez-Bazán, C. 2011 Effect of base cavities on the stability of the wake behind slender blunt-based axisymmetric bodies. Phys. Fluids 23 (11), 114103.10.1063/1.3658774CrossRefGoogle Scholar
Sanmiguel-Rojas, E., Sevilla, A., Martínez-Bazán, C. & Chomaz, J.-M. 2009 Global mode analysis of axisymmetric bluff-body wakes: stabilization by base bleed. Phys. Fluids 21 (11), 114102.10.1063/1.3259357CrossRefGoogle Scholar
Sarkar, S. & De, A.K. 2025 Vortex-induced vibration of a streamwise and transversely rotating sphere. J. Fluid Mech. 1016, A18.10.1017/jfm.2025.10380CrossRefGoogle Scholar
Schouveiler, L. & Provansal, M. 2002 Self-sustained oscillations in the wake of a sphere. Phys. Fluids 14 (11), 38463854.10.1063/1.1508770CrossRefGoogle Scholar
Shenoy, A.R. & Kleinstreuer, C. 2008 Flow over a thin circular disk at low to moderate Reynolds numbers. J. Fluid Mech. 605, 253262.10.1017/S0022112008001626CrossRefGoogle Scholar
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. I. Coherent structures. Q. Appl. Maths 45 (3), 561571.10.1090/qam/910462CrossRefGoogle Scholar
Sreenivasan, K.R., Strykowski, P.J. & Olinger, D.J. 1987 Hopf bifurcation, landau equation, and vortex shedding behind circular cylinders. In Forum On Unsteady Flow Separation, vol. 1, pp. 113. ASME New York.Google Scholar
Sunil, P., Kumar, S. & Poddar, K. 2022 Flow past a rotationally oscillating cylinder with an attached flexible filament. J. Fluid Mech. 930, A3.10.1017/jfm.2021.894CrossRefGoogle Scholar
Szaltys, P., Chrust, M., Przadka, A., Goujon-Durand, S., Tuckerman, L.S. & Wesfreid, J.E. 2012 Nonlinear evolution of instabilities behind spheres and disks. J. Fluids Struct. 28, 483487.10.1016/j.jfluidstructs.2011.10.004CrossRefGoogle Scholar
Taneda, S. 1956 Experimental investigation of the wake behind a sphere at low reynolds numbers. J. Phys. Soc. Japan 11 (10), 11041108.10.1143/JPSJ.11.1104CrossRefGoogle Scholar
Thompson, M.C., Leweke, T. & Provansal, M. 2001 Kinematics and dynamics of sphere wake transition. J. Fluids Struct. 15 (3–4), 575585.10.1006/jfls.2000.0362CrossRefGoogle Scholar
Zheng, X.-L., Pan, J.-H. & Ni, M.-J. 2023 Linear global stability of a flow past a sphere under a streamwise magnetic field. J. Fluid Mech. 970, A16.10.1017/jfm.2023.617CrossRefGoogle Scholar