Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T05:46:10.988Z Has data issue: false hasContentIssue false

On the convection velocity of source events related to supersonic jet crackle

Published online by Cambridge University Press:  18 March 2016

Nathan E. Murray*
Affiliation:
National Center for Physical Acoustics, The University of Mississippi, University, MS 38677, USA
Gregory W. Lyons
Affiliation:
National Center for Physical Acoustics, The University of Mississippi, University, MS 38677, USA
*
Email address for correspondence: nmurray@olemiss.edu

Abstract

An image analysis method is developed and applied to shadowgraph images of supersonic jet flow to measure shock front propagation angles at numerous interrogation points distributed throughout the quiescent region outside of the jet shear layer. These shock fronts manifest in acoustic measurements of jet noise as steepened temporal waveforms that have been linked to the perception of crackle. The analysis method uses the Radon transform to quantitatively determine a local shock front propagation angle at each point. The dataset of angles is subsequently used to determine the locations and convection velocities of the sources inside the jet shear layer. The results indicate that the shock-like waves emerge immediately from the jet shear layer and are created by the supersonic convection of coherent structures. The statistical distribution of convection velocities follows an extreme value distribution, indicating that the shock front emitting sources are maxima of the underlying turbulence. A noise reduction method known to reduce the convection velocities in the jet shear layer is applied to the jet to investigate the effect on the shock front emission. The shock front angles change in concert with the reduction in convection velocity giving further evidence that the source of crackle is a flow field event.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, A. T. & Freund, J. B.2012 Source mechanisms of jet crackle. AIAA Paper 2012-2251.Google Scholar
Baars, W. J. & Tinney, C. E. 2014 Shock-structures in the acoustic field of a mach 3 jet with crackle. J. Sound Vib. 333, 25392553.Google Scholar
Baars, W. J., Tinney, C. E., Wochner, M. S. & Hamilton, M. F. 2014 On cumulative nonlinear acoustic waveform distortions from high-speed jets. J. Fluid Mech. 749, 331366.Google Scholar
Canchero, A., Tinney, C. E., Murray, N. E. & Ruf, J. H. 2016 Acoustic imaging of clustered rocket nozzles undergoing the end-effects regime. AIAA J. (in review).Google Scholar
Castillo, E. 1988 Extreme Value Theory in Engineering. Academic.Google Scholar
Dewey, J. M. 2001 Explosive flows: shock tubes and blast waves. In Handbook of Flow Visualization, pp. 481497. Taylor & Francis.Google Scholar
Fagan, A. F., L’Esperance, D. & Zaman, K. B. M. Q.2014 Application of a novel projection focusing schlieren system in NASA test facilities. AIAA Paper 2014-2522.Google Scholar
Ffowcs-Williams, J. E., Simson, J. & Virchis, V. J. 1975 ‘Crackle’: an annoying component of jet noise. J. Fluid Mech. 71 (2), 251271.Google Scholar
Fiévet, R., Tinney, C. E., Baars, W. J. & Hamilton, M. F. 2016 Coalescence in the sound field of a laboratory-scale supersonic jet. AIAA J. 54 (1), 254265.Google Scholar
Fiévet, R., Tinney, C. E., Murray, N. E., Lyons, G. W. & Panickar, P.2013 Acoustic source indicators using LES in a fully expanded and heated supersonic jet. AIAA Paper 2013-2193.Google Scholar
Gee, K., Neilsen, T., Muhlestein, M., Wall, A., Downing, J. M., James, M. M. & McKinley, R.2013 On the evolution of crackle in jet noise from high-performance engines. AIAA Paper 2013-2190.Google Scholar
Gee, K. L., Downing, J. M., James, M. M., McKinley, R. C., McKinley, R. L., Neilsen, T. B. & Wall, A. T.2012 Nonlinear evolution of noise from a military jet aircraft during ground run-up. AIAA Paper 2012-2258.Google Scholar
Gee, K. L., Gabrielson, T. B., Atchley, A. A. & Sparrow, V. W. 2005 Preliminary analysis of nonlinearity in military jet aircraft noise propagation. AIAA J. 43 (6), 13981401.Google Scholar
Gee, K. L., Sparrow, V. W., Atchley, A. & Gabrielson, T. B. 2007 On the perception of crackle in high-amplitude jet noise. AIAA J. 45 (3), 593598.Google Scholar
Gee, K. L., Sparrow, V. W., James, M. M., Downing, J. M., Hobbs, C. M., Gabrielson, T. B. & Atchley, A. A. 2008 The role of nonlinear effects in the propagation of noise from high-power aircraft. J. Acoust. Soc. Am. 123 (6), 40824093.Google Scholar
Hall, J. L., Dimotakis, P. E. & Rosemann, H. 1993 Experiments in nonreacting compressible shear layers. AIAA J. 31 (12), 22472254.Google Scholar
Hargather, M. J. & Settles, G. S. 2009 Retroreflective shadowgraph technique for large-scale flow visualization. Appl. Opt. 48 (22), 44494457.Google Scholar
Krothapalli, A., Venkatakrishnan, L & Lourenco, L.2000 Crackle: A dominant component of supersonic jet mixing noise. AIAA Paper 2000-2024.Google Scholar
Martens, S., Spyropoulos, J. T. & Nagel, Z.2011 The effect of chevrons on crackle – engine and scale model results. In Proceedings of the ASME Turbo Expo 2011, Paper GR2011-46417, Vancouver, BC, Canada.Google Scholar
McInerny, S. A. 1996 Launch vehicle acoustics. Part 2: statistics of the time domain data. J. Aircraft 33 (3), 518523.Google Scholar
Murray, N. E. & Jansen, B. J. 2012 Performance efficient jet noise reduction for supersonic nozzles. Intl J. Aeroacoust. 11 (7 and 8), 937956.Google Scholar
Murray, N. E. & Jansen, B. J.2014 Observed effect of bypass flow on jet noise. AIAA Paper 2014-0522.Google Scholar
Nichols, J. W., Lele, S. K., Ham, F. E., Martens, S. & Spyropoulos, J. T. 2013a Crackle noise in heated supersonic jets. Trans. ASME J. Engng Gas Turbines Power 135 (5), 051202.Google Scholar
Nichols, J. W., Lele, S. K. & Spyropoulos, J. T.2013b The source of crackle noise in heated supersonic jets. AIAA Paper 2013-2197.Google Scholar
Norum, T. & Seiner, J. M. 1982 Broadband shock noise from supersonic jets. AIAA J. 20 (1), 6873.Google Scholar
Oertel, H. 1980 Mach wave radiation of hot supersonic jets investigated by means of the shock tube and new optical techniques. In 12th International Symposium on Shock-Tubes and Waves, pp. 266275.Google Scholar
Panda, J. & Seasholtz, R. G. 2002 Experimental investigation of density fluctuations in high-speed jets and correlation with generated noise. J. Fluid Mech. 450, 97130.Google Scholar
Pao, S. & Seiner, J. M. 1983 Shock-associated noise in supersonic jets. AIAA J. 21 (5), 687693.Google Scholar
Papamoschou, D. & Bunyajitradulya, A. 1997 Evolution of large eddies in compressible shear layers. Phys. Fluids 9 (3), 756765.Google Scholar
Papamoschou, D. & Debiasi, M. 1999 Noise measurements in supersonic jets treated with the mach wave elimination method. AIAA J. 37 (2), 154160.Google Scholar
Papamoschou, D., Xiong, J. & Liu, F.2014 Reduction of radiation efficiency in high-speed jets. AIAA Paper 2014-2619.Google Scholar
Ponton, M., Seiner, J. M., Ukeiley, L. & Jansen, B.2001 A new anechoic chamber design for testing high-temperature jet flows. AIAA Paper 2001-2190.Google Scholar
Seiner, J. M., Bhat, T. & Ponton, M. 1994 Mach wave emission from a high-temperature supersonic jets. AIAA J. 32 (12), 23452350.Google Scholar
Seiner, J. M., Ponton, M., Jansen, B. J. & Lagen, N. 1992 The effects of temperature on supersonic jet noise emission. In DGLR/AIAA 14th Aeroacoustic Conference, Aachen, Germany, vol. 1, pp. 295307.Google Scholar
Settles, G. S. 2001 Schlieren and Shadowgraph Techniques. Springer.Google Scholar
Suzuki, T. & Lele, S. K. 2003 Shock leakage through an unsteady vortex-laden mixing layer: application to jet screech. J. Fluid Mech. 490, 139167.CrossRefGoogle Scholar
Tam, C. K. W. 1971 Directional acoustic radiation from a supersonic jet generated by shear layer instability. J. Fluid Mech. 46 (04), 757768.Google Scholar
Tam, C. K. W. & Hu, Fang Q 1989 On the three families of instability waves of high-speed jets. J. Fluid Mech. 201, 447483.Google Scholar
Tam, C. K. W.2009 Mach wave radiation from high-speed jets. AIAA Paper 2009-0013.Google Scholar
Tam, C. K. W. & Chen, P. 1994 Turbulent mixing noise from supersonic jets. AIAA J. 32 (9), 17741780.Google Scholar
Thurow, B. S., Jiang, N., Kim, J.-H., Lempert, W. & Samimy, M. 2008 Issues with measurements of the convective velocity of large-scale structures in the compressible shear layer of a free jet. Phys. Fluids 20 (6), 066101.Google Scholar
Tinney, C. E., Ukeiley, L. S. & Glauser, M. N. 2008 Low-dimensional characteristics of a transonic jet. Part 2. Estimate and far-field prediction. J. Fluid Mech. 615, 5392.Google Scholar
Troutt, T. R. & McLaughlin, D. K. 1982 Experiments on the flow and acoustic properties of a moderate-Reynolds-number supersonic jet. J. Fluid Mech. 116, 123156.Google Scholar
Varnier, J. 2001 Experimental study and simulation of rocket engine freejet noise. AIAA J. 39 (10), 18511859.Google Scholar
Veltin, J., Day, B. J. & McLaughlin, D. K. 2011 Correlation of flowfield and acoustic field measurements in high-speed jets. AIAA J. 49 (1), 150163.Google Scholar