Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T06:19:24.028Z Has data issue: false hasContentIssue false

On the applicability of Taylor's hypothesis, including small sampling velocities

Published online by Cambridge University Press:  03 December 2021

Hans L. Pécseli*
Affiliation:
Physics Department, University of Oslo, N-0316Oslo, Norway Department of Physics and Technology, Arctic University of Norway, N-9037Tromsø, Norway
Jan K. Trulsen
Affiliation:
Institute for Theoretical Astrophysics, University of Oslo, N-0315Oslo, Norway
*
Email address for correspondence: hans.pecseli@fys.uio.no

Abstract

Taylor's hypothesis, or the frozen turbulence approximation, can be used to estimate also the specific energy dissipation rate $\epsilon$ by comparing experimental results with the Kolmogorov–Obukhov expression. The hypothesis assumes that a frequency detected by an instrument moving with a constant large velocity $V$ can be related to a wavenumber by $\omega = k V$. It is, however, not obvious how large the translational velocity has to be in order to make the hypothesis valid, or at least applicable with some acceptable uncertainty. Using the space–time-varying structure function for homogeneous and isotropic conditions, this question is addressed in the present study with emphasis on small velocities $V$. The structure function is obtained using results from numerical solutions of the Navier–Stokes equation. Particular attention is given to the $V$ variation of the estimated specific energy dissipation, $\epsilon _{est}$, compared with the actual value, $\epsilon$, used in the numerical calculations. In contrast to previous studies, the results emphasize velocities $V$ less than or comparable to the one-component root-mean-square velocity, $u_{rms}$. We find that $\epsilon$ can be determined to an acceptable accuracy for $V \geq 0.3\,u_{rms}$. A simple analytical model is suggested to explain the main features of the observations, both Eulerian and Lagrangian. The model assumes that the observed time variations are solely due to eddies moving past the observer, thus ignoring eddy deformation and intermittency effects. In spite of these simplifications, the analysis accounts for most of the numerical results when also eddy-size-dependent velocities are accounted for.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Batchelor, G.K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.Google Scholar
Beran, M.J. 1968 Statistical Continuum Theories, Monographs in Statistical Physics and Thermodynamics, vol. 9. Interscience.CrossRefGoogle Scholar
Biferale, L., Bodenschatz, E., Cencini, M., Lanotte, A.S., Ouellette, N.T., Toschi, F. & Xu, H. 2008 Lagrangian structure functions in turbulence: a quantitative comparison between experiment and direct numerical simulation. Phys. Fluids 20, 065103.CrossRefGoogle Scholar
Biferale, L., Boffetta, G., Celani, A., Devenish, B.J., Lanotte, A. & Toschi, F. 2004 Multifractal statistics of Lagrangian velocity and acceleration in turbulence. Phys. Rev. Lett. 93, 064502.CrossRefGoogle ScholarPubMed
Biferale, L., Boffetta, G., Celani, A., Devenish, B.J., Lanotte, A. & Toschi, F. 2005 a Lagrangian statistics of particle pairs in homogeneous isotropic turbulence. Phys. Fluids 17, 115101.CrossRefGoogle Scholar
Biferale, L., Boffetta, G., Celani, A., Lanotte, A. & Toschi, F. 2005 b Particle trapping in three-dimensional fully developed turbulence. Phys. Fluids 17, 021701.CrossRefGoogle Scholar
Buckingham, E. 1914 On physically similar systems; illustrations of the use of dimensional equations. Phys. Rev. 4, 345376.CrossRefGoogle Scholar
Chandrasekhar, S. 1957 The theory of turbulence. J. Madras Univ. B 27, 251275.Google Scholar
Chen, S. & Kraichnan, R.H. 1989 Sweeping decorrelation in isotropic turbulence. Phys. Fluids A: Fluid Dyn. 1, 20192024.CrossRefGoogle Scholar
Cheng, Y., Sayde, C., Li, Q., Basara, J., Selker, J., Tanner, E. & Gentine, P. 2017 Failure of Taylor's hypothesis in the atmospheric surface layer and its correction for eddy-covariance measurements. Geophys. Res. Lett. 44, 42874295.CrossRefGoogle Scholar
Csanady, G.T. 1973 Turbulent Diffusion in the Environment. D. Reidel Publishing Company.CrossRefGoogle Scholar
Davidson, P.A. 2004 Turbulence. An Introduction for Scientists and Engineers. Oxford University Press.Google Scholar
Del Álamo, J.C. & Jiménez, J. 2009 Estimation of turbulent convection velocities and corrections to Taylor's approximation. J. Fluid Mech. 640, 526.CrossRefGoogle Scholar
Dennis, D.J.C. & Nickels, T.B. 2008 On the limitations of Taylor's hypothesis in constructing long structures in a turbulent boundary layer. J. Fluid Mech. 614, 197206.CrossRefGoogle Scholar
Dobler, W., Haugen, N.E.L., Yousef, T.A. & Brandenburg, A. 2003 Bottleneck effect in three-dimensional turbulence simulations. Phys. Rev. E 68, 026304.CrossRefGoogle ScholarPubMed
Du, S., Sawford, B.L., Wilson, J.D. & Wilson, D.J. 1995 Estimation of the Kolmogorov constant (C0) for the Lagrangian structure function, using a second-order Lagrangian model of grid turbulence. Phys. Fluids 7, 30833090.CrossRefGoogle Scholar
Falkovich, G., Xu, H., Pumir, A., Bodenschatz, E., Biferale, L., Boffetta, G., Lanotte, A.S. & Toschi, F. 2012 On Lagrangian single-particle statistics. Phys. Fluids 24, 055102.CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence: The Legacy of A.N. Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Geng, C, He, G., Wang, Y., Xu, C., Lozano-Durán, A. & Wallace, J.M. 2015 Taylor's hypothesis in turbulent channel flow considered using a transport equation analysis. Phys. Fluids 27, 025111.CrossRefGoogle Scholar
Granata, T.C. & Dickey, T.D. 1991 The fluid mechanics of copepod feeding in turbulent flow: a theoretical approach. Prog. Oceanogr. 26, 243261.CrossRefGoogle Scholar
Han, G., Wang, G.H. & Zheng, X.J. 2019 Applicability of Taylor's hypothesis for estimating the mean streamwise length scale of large-scale structures in the near-neutral atmospheric surface layer. Boundary-Layer Meteorol. 172, 215237.CrossRefGoogle Scholar
Hinze, J.O. 1975 Turbulence, 2nd edn. McGraw Hill.Google Scholar
von Kármán, T. 1948 Progress in the statistical theory of turbulence. Proc. Natl Acad. Sci. USA 34, 530539.CrossRefGoogle ScholarPubMed
de Kat, R. & Ganapathisubramani, B. 2015 Frequency–wavenumber mapping in turbulent shear flows. J. Fluid Mech. 783, 166190.CrossRefGoogle Scholar
Kelso, R.M., Lim, T.T. & Perry, A.E. 1994 A novel flying hot-wire system. Exp. Fluids 16, 181186.CrossRefGoogle Scholar
Kiørboe, T. 2008 A Mechanistic Approach to Plankton Ecology. Princeton University Press.Google Scholar
Kiørboe, T. & Saiz, E. 1995 Planktivorous feeding in calm and turbulent environments, with emphasis on copepods. Mar. Ecol. Prog. Ser. 122, 135145.CrossRefGoogle Scholar
Kofoed-Hansen, O. & Wandel, C.F. 1967 On the relation between Eulerian and Lagrangian averages in the statistical theory of turbulence. Tech. Rep. 50. Risø National Laboratory.Google Scholar
Larsén, X.G., Vincent, C. & Larsen, S. 2013 Spectral structure of mesoscale winds over the water. Q. J. R. Meteorol. Soc. 139, 685700.CrossRefGoogle Scholar
Lueck, R.G., Wolk, F. & Yamazaki, H. 2002 Oceanic velocity microstructure measurements in the 20th century. J. Oceanogr. 58, 153174.CrossRefGoogle Scholar
Lumley, J.L. 1965 Interpretation of time spectra measured in high-intensity shear flows. Phys. Fluids 8, 10561062.CrossRefGoogle Scholar
MacKenzie, B.R. & Leggett, W.C. 1993 Wind-based models for estimating the dissipation rates of turbulent energy in aquatic environments: empirical comparisons. Mar. Ecol. Prog. Ser. 94, 207216.CrossRefGoogle Scholar
Mann, J., Ott, S., Pécseli, H.L. & Trulsen, J. 2005 Turbulent particle flux to a perfectly absorbing surface. J. Fluid Mech. 534, 121.CrossRefGoogle Scholar
Maré, M. & Mann, J. 2016 On the space-time structure of sheared turbulence. Boundary-Layer Meteorol. 160, 453474.CrossRefGoogle Scholar
Mikkelsen, T., Larsen, S.E. & Pécseli, H.L. 1987 Diffusion of Gaussian puffs. Q. J. R. Meteorol. Soc. 113, 81105.CrossRefGoogle Scholar
Moin, P. 2009 Revisiting Taylor's hypothesis. J. Fluid Mech. 640, 14.CrossRefGoogle Scholar
Nastrom, G.D. & Gage, K.S. 1985 A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci. 42, 950960.2.0.CO;2>CrossRefGoogle Scholar
Orszag, S.A. 1977 Lectures on the Statistical Theory of Turbulence. Gordon and Breach Science Publishers.Google Scholar
Ott, S. & Mann, J. 2000 An experimental investigation of the relative diffusion of particle pairs in three dimensional turbulent flow. J. Fluid Mech. 422, 207223.CrossRefGoogle Scholar
Pécseli, H.L. 2015 Spectral properties of electrostatic drift wave turbulence in the laboratory and the ionosphere. Ann. Geophys. 33, 875900.CrossRefGoogle Scholar
Pécseli, H.L. & Mikkelsen, T. 1985 Turbulent diffusion in two-dimensional strongly magnetized plasmas. J. Plasma Phys. 34, 7794.CrossRefGoogle Scholar
Pécseli, H.L. & Trulsen, J. 1995 Velocity correlations in two-dimensional electrostatic turbulence in low-$\beta$ plasmas. J. Plasma Phys. 54, 401430.CrossRefGoogle Scholar
Pécseli, H.L. & Trulsen, J. 2007 Turbulent particle fluxes to perfectly absorbing surfaces: a numerical study. J. Turbul. 8, N42.CrossRefGoogle Scholar
Pécseli, H.L., Trulsen, J.K., Stiansen, J.E. & Sundby, S. 2020 Feeding of plankton in a turbulent environment: a comparison of analytical and observational results covering also strong turbulence. Fluids 5, 37.CrossRefGoogle Scholar
Renard, N. & Deck, S. 2015 On the scale-dependent turbulent convection velocity in a spatially developing flat plate turbulent boundary layer at Reynolds number $Re_\theta =13\,000$. J. Fluid Mech. 775, 105148.CrossRefGoogle Scholar
Rothschild, B.J. & Osborn, T.R. 1988 Small-scale turbulence and plankton contact rates. J. Plankton Res. 10, 465474.CrossRefGoogle Scholar
Sawford, B.L. & Yeung, P.K. 2015 Direct numerical simulation studies of Lagrangian intermittency in turbulence. Phys. Fluids 27, 065109.CrossRefGoogle Scholar
Schulz-DuBois, E.O. & Rehberg, I. 1981 Structure function in lieu of correlation function. Appl. Phys. 24, 323329.CrossRefGoogle Scholar
Sharqawy, M.H., Lienhard, J.H. & Zubair, S.M. 2010 Thermophysical properties of seawater: a review of existing correlations and data. Desalin. Water Treat. 16, 354380.CrossRefGoogle Scholar
Sharqawy, M.H., Lienhard, J.H. & Zubair, S.M. 2012 Erratum to thermophysical properties of seawater: a review of existing correlations and data [Desalination and Water Treatment, Vol. 16 (2010) 354–380]. Desalin. Water Treat. 44, 361361.CrossRefGoogle Scholar
Shet, C.S., Cholemari, M.R. & Veeravalli, S.V. 2017 Eulerian spatial and temporal autocorrelations: assessment of Taylor's hypothesis and a model. J. Turbul. 18, 11051119.CrossRefGoogle Scholar
Squire, D.T., Hutchins, N., Morrill-Winter, C., Schultz, M.P., Klewicki, J.C. & Marusic, I. 2017 Applicability of Taylor's hypothesis in rough- and smooth-wall boundary layers. J. Fluid Mech. 812, 398417.CrossRefGoogle Scholar
Sreenivasan, K.R. 1995 On the universality of the Kolmogorov constant. Phys. Fluids 7, 27782784.CrossRefGoogle Scholar
Stiansen, J.E. & Sundby, S. 2001 Improved methods for generating and estimating turbulence in tanks suitable for fish larvae experiments. Scientia Marina 65, 151167.CrossRefGoogle Scholar
Taylor, G.I. 1938 The spectrum of turbulence. Proc. R. Soc. Lond. A 164, 476490.CrossRefGoogle Scholar
Tennekes, H. 1975 Eulerian and Lagrangian time microscales in isotropic turbulence. J. Fluid Mech. 67, 561567.CrossRefGoogle Scholar
Tennekes, H. & Lumley, J.L. 1972 A First Course in Turbulence. The MIT Press.CrossRefGoogle Scholar
Treumann, R.A., Baumjohann, W. & Narita, Y. 2019 On the applicability of Taylor's hypothesis in streaming magnetohydrodynamic turbulence. Earth Planet Space 71, 41.CrossRefGoogle Scholar
Vierinen, J., Chau, J.L., Charuvil, H., Urco, J.M., Clahsen, M., Avsarkisov, V., Marino, R. & Volz, R. 2019 Observing mesospheric turbulence with specular meteor radars: a novel method for estimating second-order statistics of wind velocity. Earth Space Sci. 6, 11711195.CrossRefGoogle Scholar
Wandel, C.F. & Kofoed-Hansen, O. 1962 On the Eulerian-Lagrangian transformation in the statistical theory of turbulence. J. Geophys. Res. 67, 30893093.CrossRefGoogle Scholar
Weinstock, J. 1976 Lagrangian-Eulerian relation and the independence approximation. Phys. Fluids 19, 17021711.CrossRefGoogle Scholar
Woodward, P.R., Porter, D.H., Edgar, B.K., Anderson, S. & Bassett, G. 1995 Parallel computation of turbulent fluid-flow. Comput. Appl. Math. 14, 97105.Google Scholar
Wyngaard, J.C. & Clifford, S.F. 1977 Taylor's hypothesis and high-frequency turbulence spectra. J. Atmospheric Sci. 34, 922929.2.0.CO;2>CrossRefGoogle Scholar
Yakhot, V., Orszag, S.A. & She, Z.-S. 1989 Space-time correlations in turbulence: kinematical versus dynamical effects. Phys. Fluids A: Fluid Dyn. 1, 184186.CrossRefGoogle Scholar