Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T02:17:06.908Z Has data issue: false hasContentIssue false

On bubble forces in turbulent channel flows from direct numerical simulations

Published online by Cambridge University Press:  12 November 2019

A. du Cluzeau*
Affiliation:
DEN-Service de Thermo-hydraulique et de Mécanique des Fluides (STMF), CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
G. Bois*
Affiliation:
DEN-Service de Thermo-hydraulique et de Mécanique des Fluides (STMF), CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
A. Toutant
Affiliation:
PROMES-CNRS (UPR 8521), Université de Perpignan Via Domitia, 66100 Perpignan, France
J.-M. Martinez
Affiliation:
PROMES-CNRS (UPR 8521), Université de Perpignan Via Domitia, 66100 Perpignan, France
*
Email addresses for correspondence: antoine.ducluzeau@cea.fr, guillaume.bois@cea.fr
Email addresses for correspondence: antoine.ducluzeau@cea.fr, guillaume.bois@cea.fr

Abstract

The prediction of void fraction, which relies on interfacial force models, is a major issue in the context of boiling. The two-fluid model requires the modelling of the momentum transfer between phases. When bubbles are small (particle hypothesis), the momentum transfer is related to interfacial forces acting on bubbles. However, the splitting of these forces into drag, lift, added mass, etc., is not straightforward from the local point of view, where only the total interfacial force is defined as an integral of the constraint over the interface. For large-size bubbles, the particle hypothesis can be questioned. The momentum transfer can then be connected to the forces acting on a fluid element of the vapour phase. Based on the local and averaged formulations of the Navier–Stokes equations, a new balance equation for forces enables us to define lift, drag, added-mass and dispersion forces acting on a fluid element of the vapour phase. This equation gives a local definition for all the forces responsible for spatial distribution of bubbles and reflects the meaning usually assigned to the interfacial forces in the particle approach. Through this means, the link between the local formulation and physical phenomena is established and a new way of modelling the lift force is proposed. Furthermore, a new laminar dispersion force which relies on surface tension and pressure effects is introduced. The analysis of the budget equation on our direct numerical simulation database brings into light the large influence of this laminar dispersion force in the migration process. Different well-known physical behaviours can be modelled via this new force: the horizontal clustering of spherical bubbles in laminar flows and the oscillating trajectories of deformable bubbles.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adoua, R., Legendre, D. & Magnaudet, J. 2009 Reversal of the lift force on an oblate bubble in a weakly viscous linear shear flow. J. Fluid Mech. 628, 2341.Google Scholar
Amoura, Z., Besnaci, C. & Risso, F. 2017 Velocity fluctuations generated by the flow through a random array of spheres: a model of bubble-induced agitation. J. Fluid Mech. 823, 592616.Google Scholar
Antal, S. P., Lahey, R. T. & Flaherty, J. E. 1991 Analysis of phase distribution in fully developed laminar bubbly two-phase flow. Intl J. Multiphase Flow 17 (5), 635652.Google Scholar
Batchelor, G. K. 1972 Sedimentation in a dilute dispersion of spheres. J. Fluid Mech. 52, 245272.Google Scholar
Biesheuvel, A. & Wijngaarden, L. V. 1984 Two-phase flow equations for a dilute dispersion of gas bubbles in liquid. J. Fluid Mech. 148, 301318.Google Scholar
Bois, G. 2017 Direct numerical simulation of a turbulent bubbly flow in a vertical channel: towards an improved second-order Reynolds stress model. Nucl. Engng Des. 321, 92103.Google Scholar
Bois, G., du Cluzeau, A., Toutant, A. & Martinez, J. M. 2017 DNS of turbulent bubbly flows in plane channels using the Front-Tracking algorithm of TrioCFD. In Fluids Eng. Div. Summer Meet. Multiph. Flow Tech. Comm. ASME.Google Scholar
Bois, G., Fauchet, G. & Toutant, A. 2016 DNS of a turbulent steam/water bubbly flow in a vertical channel. In 9th International Conference on Multiphase Flow. ICMF.Google Scholar
Bunner, B. & Tryggvason, G. 2002 Dynamics of homogeneous bubbly flows. Part 1. Rise velocity and microstructure of the bubbles. J. Fluid Mech. 466, 1752.Google Scholar
Chahed, J., Roig, V. & Masbernat, L. 2003 Eulerian–Eulerian two-fluid model for turbulent gas liquid bubbly flows. Intl J. Multiphase Flow 29, 2349.Google Scholar
Chandesris, M., D’Hueppe, A., Mathieu, B., Jamet, D. & Goyeau, B. 2013 Direct numerical simulation of turbulent heat transfer in a fluid-porous domain. Phys. Fluids 25, 125110.Google Scholar
Chandesris, M. & Jamet, D. 2006 Boundary conditions at a planar fluid-porous interface for a Poiseuille flow. Intl J. Heat Mass Transfer 49 (13–14), 21372150.Google Scholar
Chandesris, M. & Jamet, D. 2009 Derivation of jump conditions for the turbulence k–epsilon model at a fluid/porous interface. Intl J. Heat Fluid Flow 30, 306318.Google Scholar
du Cluzeau, A., Bois, G. & Toutant, A. 2019 Analysis and modeling of Reynolds stresses in turbulent bubbly up-flows from direct numerical simulations. J. Fluid Mech. 866, 132168.Google Scholar
Dabiri, S., Lu, J. & Tryggvason, G. 2017 Transition between regimes of a vertical channel bubbly upflow due to bubble deformability. Phys. Fluids 25, 102110.Google Scholar
Delhaye, J. M. 2008 Thermohydraulique des réacteurs. ADP Sciences.Google Scholar
Drew, D. A. & Passman, S. L. 1999 Theory of Multicomponent Fluids. Springer.Google Scholar
Dupuy, D., Toutant, A. & Bataille, F. 2018 Turbulence kinetic energy exchanges in flows with highly variable fluid properties. J. Fluid Mech. 834, 554.Google Scholar
Gatignol, R. 1983 The faxen formulae for a rigid particle in an unsteady non-uniform Stokes flow. J. Méc. Théor. Appl. 2 (2), 143160.Google Scholar
Geurst, J. A. 1985 Virtual mass in two-phase bubbly flow. Phys. A Stat. Mech. Appl. 129 (2), 233261.Google Scholar
Geurst, J. A. 1986 Variational principles and two-fluid hydrodynamics of bubbly liquid/gas mixtures. Phys. A Stat. Mech. Appl. 135 (2-3), 455486.Google Scholar
Ishii, M. & Hibiki, T. 2006 Thermo-Fluid Dynamics of Two-Phase Flow. Springer.Google Scholar
Ishii, M. & Zuber, N. 1979 Drag coefficient and relative velocity in bubbly, droplet or particulate flows. AIChE J. 25 (5), 843855.Google Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.Google Scholar
Kataoka, I. 1986 Local instant formulation of two-phase flow. Intl J. Multiphase Flow 12 (5), 745758.Google Scholar
Laviéville, J., Mérigoux, N., Guingo, M., Baudry, C. & Mimouni, S. 2015 A Generalized Turbulent Dispersion Model for bubbly flow numerical simulation in NEPTUNE_CFD. In NURETH-16, pp. 41674181. American Nuclear Society.Google Scholar
Legendre, D., Borée, J. & Magnaudet, J. 1998 Thermal and dynamic evolution of a spherical bubble moving steadily in a superheated or subcooled liquid. Phys. Fluids 10, 12561272.Google Scholar
Legendre, D. & Magnaudet, J. 1998 The lift force on a spherical bubble in a viscous linear shear flow. J. Fluid Mech. 368, 81126.Google Scholar
Lhuillier, D., Morel, C. & Delhaye, J. M. 2000 Bilan d’aire interfaciale dans un mélange diphasique: approche locale versus approche particulaire. Académie des Sci. 4620 (00), 143149.Google Scholar
Lopez de Bertodano, M. A. 1998 Two fluid model for two-phase turbulent jets. Nucl. Engng Des. 179 (1), 6574.Google Scholar
Lu, J. & Tryggvason, G. 2008 Effect of bubble deformability in turbulent bubbly upflow in a vertical channel. Phys. Fluids 20, 040701.Google Scholar
Lubchenko, N., Magolan, B., Sugrue, R. & Baglietto, E. 2017 A more fundamental wall lubrication force from turbulent dispersion regularization for multiphase CFD applications. Intl J. Multiphase Flow 98, 3644.Google Scholar
Magnaudet, J. & Eames, I. 2002 The motion of high-Reynolds-number bubbles in inhomogeneous flows. Annu. Rev. Fluid Mech. 32, 659708.Google Scholar
Magnaudet, J., Fabre, J. & Rivero, M. 1995 Accelerated flows past a rigid sphere or a spherical bubble. Part 1. Steady straining flow. J. Fluid Mech. 284, 97135.Google Scholar
Mathieu, B.2003 Etudes physique, expérimentale et numérique des mécanismes de base intervenant dans les écoulements diphasiques en micro-fluidique. PhD thesis.Google Scholar
Moore, D. W. 1965 The velocity of rise of distorted gas bubbles in a liquid of small viscosity. J. Fluid Mech. 23, 749766.Google Scholar
Moraga, F. J., Larreteguy, A. E., Drew, D. A. & Lahey, R. T. 2006 A center-averaged two-fluid model for wall-bounded bubbly flows. Comput. Fluids 35 (4), 429461.Google Scholar
Pauchon, C. & Banerjee, S. 1986 Interphase momentum interaction effects in the averaged multifield model. Part I. Void propagation in bubbly flows. Intl J. Multiphase Flow 12 (4), 559573.Google Scholar
Prosperetti, A. & Jones, A. V. 1984 Pressure forces in disperse two-phase flow. Intl J. Multiphase Flow 10 (4), 425440.Google Scholar
Puckett, E. G., Almgren, A. S., Bell, J. B., Marcus, D. L. & Rider, W. J. 1997 A high-order projection method for tracking fluid interfaces in variable density incompressible flows. J. Comput. Phys. 130, 269282.Google Scholar
Riboux, G., Legendre, D. & Risso, F. 2013 A model of bubble-induced turbulence based on large-scale wake interactions. J. Fluid Mech. 719, 362387.Google Scholar
Risso, F. 2016 Physical interpretation of probability density functions of bubble-induced agitation. J. Fluid Mech. 809, 240263.Google Scholar
Risso, F. 2018 Agitation, mixing, and transfers induced by bubbles. Annu. Rev. Fluid Mech. 50, 2548.Google Scholar
Simonin, O. 2000 Statistical and continuum modelling of turbulent reactive particulate flows. Part I. Theoretical derivation of dispersed phase Eulerian modelling from probability density function kinetic equation. Lect. Ser. Kareman Inst. Fluid Dyn. 6, 142.Google Scholar
Smereka, P. 1993 On the motion of bubbles in a periodic box. J. Fluid Mech. 254, 79112.Google Scholar
Stuhmiller, J. H. 1977 The influence of interfacial pressure forces on the character of two-phase flow model equations. Intl J. Multiphase Flow 3 (6), 551560.Google Scholar
Tomiyama, A., Tamai, H., Zun, I. & Hosokawa, S. 2002 Transverse migration of single bubbles in simple shear flows. Chem. Engng Sci. 57 (11), 18491858.Google Scholar
Toutant, A.2006 Modélisation physique des interactions entre interfaces et turbulence. PhD thesis, Institut National Polytechnique de Toulouse.Google Scholar
Toutant, A., Chandesris, M., Jamet, D. & Lebaigue, O. 2009 Jump conditions for filtered quantities at an under-resolved discontinuous interface. Part 2. A priori tests. Intl J. Multiphase Flow 35 (12), 11191129.Google Scholar
Toutant, A., Labourasse, E., Lebaigue, O. & Simonin, O. 2008 DNS of the interaction between a deformable buoyant bubble and a spatially decaying turbulence: a priori tests for LES two-phase flow modelling. Comput. Fluids 37 (7), 877886.Google Scholar
Toutant, A., Mathieu, B. & Lebaigue, O. 2012 Volume-conserving mesh smoothing for front-tracking methods. Comput. Fluids 67, 1625.Google Scholar
Tryggvason, G., Bunner, B., Esmaeeli, A. & Al-Rawahi, N. 2003 Computations of multiphase flows. Adv. Appl. Mech. 39 (C), 81120.Google Scholar
Tryggvason, G., Dabiri, S., Aboulhasanzadeh, B. & Lu, J. 2013 Multiscale considerations in direct numerical simulations of multiphase flows. Phys. Fluids 25, 031302.Google Scholar
Vaidheeswaran, A. & de Bertodano, M. L. 2016 Interfacial pressure coefficient for ellipsoids and its effect on the two-fluid model eigenvalues. Trans. ASME J. Fluids Engng 138 (8), 081302.Google Scholar
Wallis, G. 1990 Two Phase Flow in Waves. Springer.Google Scholar
Wijngaarden, L. V. & Kapteyn, C. 1990 Concentration waves in dilute bubble/liquid mixtures. J. Fluid Mech. 212, 111137.Google Scholar
Williamson, J. H. 1980 Low-storage Runge–Kutta schemes. J. Comput. Phys. 35 (1), 4856.Google Scholar