Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T03:58:22.795Z Has data issue: false hasContentIssue false

Observation-infused simulations of high-speed boundary-layer transition

Published online by Cambridge University Press:  16 April 2021

David A. Buchta
Affiliation:
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD21218, USA
Tamer A. Zaki*
Affiliation:
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD21218, USA
*
Email address for correspondence: t.zaki@jhu.edu

Abstract

High-speed boundary-layer transition is extremely sensitive to the free-stream disturbances which are often uncertain. This uncertainty compromises predictions of models and simulations. To enhance the fidelity of simulations, we directly infuse them with available observations. Our methodology is general and can be adopted with any simulation tool, and is herein demonstrated using direct numerical simulations. An ensemble variational (EnVar) optimization is performed, whereby we determine the upstream flow that optimally reproduces the observations. The cost functional accounts for our relative confidence in the model and the observations, and judicious choice of the ensemble members improves convergence and reduces the prediction uncertainty. We demonstrate our observation-infused predictions for boundary-layer transition at Mach 4.5. Without prior knowledge of the free-stream condition, and using only observations of wall pressure at isolated locations from an independent computation (true flow), all of the relevant inflow disturbances are identified. We then evaluate the entire flow field, beyond the original limited wall observations, and interpret simulations consistently with data and vice versa. Our predicted flow compares favourably to the true ‘unknown’ state, and discrepancies are analysed in detail. We also examine the impact of weighting of observations. Improved convergence of the inverse problem and accuracy of the inflow amplitudes and phases are demonstrated, and are explained by aid of a simple example from two-dimensional unstable, chaotic convection.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, J.L. & Anderson, S.L. 1999 A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Weath. Rev. 127 (12), 27412758.2.0.CO;2>CrossRefGoogle Scholar
Balakumar, P. & Chou, A. 2018 Transition prediction in hypersonic boundary layers using receptivity and freestream spectra. AIAA J. 56 (1), 193208.CrossRefGoogle Scholar
Berridge, D.C., Kostak, H., McKiernan, G., Wheaton, B.M., Wolf, T.D. & Schneider, S.P. 2019 Hypersonic ground tests with high-frequency instrumentation in support of the boundary layer transition (BOLT) flight experiment. In AIAA Scitech 2019 Forum, p. 0090.Google Scholar
Bounitch, A., Lewis, D. & Lafferty, J. 2011 Improved measurements of ‘tunnel noise’ pressure fluctuations in the AEDC hypervelocity wind tunnel No. 9. In 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, p. 1200.Google Scholar
Buchta, D., Vishnampet, R., Bodony, D.J. & Freund, J.B. 2016 A discrete adjoint-based shape optimization for shear-layer-noise reduction. In 22nd AIAA/CEAS Aeroacoustics Conference, p. 2776.Google Scholar
Bull, M.K. 1996 Wall-pressure fluctuations beneath turbulent boundary layers: some reflections on forty years of research. J. Sound Vib. 190 (3), 299315.CrossRefGoogle Scholar
Bushnell, D. 1990 Notes on initial disturbance fields for the transition problem. In Instability and Transition (ed. M.Y. Hussaini & R.G. Voigt), pp. 217–232. Springer.CrossRefGoogle Scholar
Casper, K.M., Beresh, S.J., Henfling, J.F., Spillers, R.W., Pruett, B.O.M. & Schneider, S.P. 2016 Hypersonic wind-tunnel measurements of boundary-layer transition on a slender cone. AIAA J. 54 (1), 12501263.CrossRefGoogle Scholar
Chang, C.L., Malik, M. & Hussaini, M. 1990 Effects of shock on the stability of hypersonic boundary layers. In 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference, p. 1448.Google Scholar
Chang, C.-L., Malik, M.R., Erlebacher, G. & Hussaini, M.Y. 1993 Linear and nonlinear PSE for compressible boundary layers. NASA Contractor Report 191537. ICASE Report No 93-70.Google Scholar
Chaudhry, R.S. & Candler, G.V. 2017 Computing measured spectra from hypersonic pitot probes with flow-parallel freestream disturbances. AIAA J. 55 (12), 41554166.CrossRefGoogle Scholar
Cheung, L.C. & Zaki, T.A. 2010 Linear and nonlinear instability waves in spatially developing two-phase mixing layers. Phys. Fluids 22 (5), 052103.CrossRefGoogle Scholar
Chynoweth, B.C. 2018 Measurements of transition dominated by the second-mode instability at Mach 6. PhD thesis, Purdue University.Google Scholar
Chynoweth, B.C., Schneider, S.P., Hader, C., Fasel, H., Batista, A., Kuehl, J., Juliano, T.J. & Wheaton, B.M. 2019 History and progress of boundary-layer transition on a Mach 6 flared cone. J. Spacecr. Rockets 56 (2), 333346.CrossRefGoogle Scholar
Colburn, C. 2011 Estimation techniques for large-scale turbulent fluid systems. PhD thesis, UC San Diego.Google Scholar
Corcos, G.M. 1963 Resolution of pressure in turbulence. J. Acoust. Soc. Am. 35 (2), 192199.CrossRefGoogle Scholar
Duan, L., et al. 2019 Characterization of freestream disturbances in conventional hypersonic wind tunnels. J. Spacecr. Rockets 56 (2), 357368.CrossRefGoogle ScholarPubMed
Fedorov, A. 2011 Transition and stability of high-speed boundary layers. Annu. Rev. Fluid Mech. 43, 7995.CrossRefGoogle Scholar
Franko, K.J. & Lele, S.K. 2013 Breakdown mechanisms and heat transfer overshoot in hypersonic zero pressure gradient boundary layers. J. Fluid Mech. 730, 491532.CrossRefGoogle Scholar
Franko, K.J. & Lele, S.K. 2014 Effect of adverse pressure gradient on high speed boundary layer transition. Phys. Fluids 26 (2), 024106.CrossRefGoogle Scholar
Hader, C. & Fasel, H.F. 2018 Towards simulating natural transition in hypersonic boundary layers via random inflow disturbances. J. Fluid Mech. 847, R3.CrossRefGoogle Scholar
Hader, C. & Fasel, H.F. 2019 Direct numerical simulations of hypersonic boundary-layer transition for a flared cone: fundamental breakdown. J. Fluid Mech. 869, 341384.CrossRefGoogle Scholar
Hanifi, A., Schmid, P.J. & Henningson, D.S. 1996 Transient growth in compressible boundary layer flow. Phys. Fluids 8 (3), 826837.CrossRefGoogle Scholar
Jahanbakhshi, R. & Zaki, T.A. 2019 Nonlinearly most dangerous disturbance for high-speed boundary-layer transition. J. Fluid Mech. 876, 87121.CrossRefGoogle Scholar
Kennedy, R.E., Laurence, S.J., Smith, M.S. & Marineau, E.C. 2018 Investigation of the second-mode instability at Mach 14 using calibrated schlieren. J. Fluid Mech. 845, R2.CrossRefGoogle Scholar
Knutson, A.L., Thome, J.S. & Candler, G.V. 2021 Numerical simulation of instabilities in the boundary-layer transition experiment flow field. J. Spacecr. Rockets 58 (1), 9099.CrossRefGoogle Scholar
Kostak, H., Bowersox, R.D., McKiernan, G., Thome, J., Candler, G.V. & King, R. 2019 Freestream disturbance effects on boundary layer instability and transition on the AFOSR BOLT geometry. In AIAA Scitech 2019 Forum, p. 0088.Google Scholar
Kovasznay, L.S.G. 1953 Turbulence in supersonic flow. J. Aeronaut. Sci. 20 (10), 657674.CrossRefGoogle Scholar
Laible, A. & Fasel, H. 2011 Numerical investigation of hypersonic transition for a flared and a straight cone at Mach 6. In 41st AIAA Fluid Dynamics Conference and Exhibit, p. 3565.Google Scholar
Larsson, J. & Lele, S.K. 2009 Direct numerical simulation of canonical shock/turbulence interaction. Phys. Fluids 21 (12), 126101.CrossRefGoogle Scholar
Laurence, S.J., Wagner, A. & Hannemann, K. 2016 Experimental study of second-mode instability growth and breakdown in a hypersonic boundary layer using high-speed schlieren visualization. J. Fluid Mech. 797, 471503.CrossRefGoogle Scholar
Laurence, S.J., Wagner, A., Hannemann, K., Wartemann, V., Lüdeke, H., Tanno, H. & Itoh, K. 2012 Time-resolved visualization of instability waves in a hypersonic boundary layer. AIAA J. 50 (1), 243246.CrossRefGoogle Scholar
Li, X., Fu, D. & Ma, Y. 2010 Direct numerical simulation of hypersonic boundary layer transition over a blunt cone with a small angle of attack. Phys. Fluids 22 (2), 025105.CrossRefGoogle Scholar
Liu, C., Xiao, Q. & Wang, B. 2008 An ensemble-based four-dimensional variational data assimilation scheme. Part I: technical formulation and preliminary test. Mon. Weath. Rev. 136 (9), 33633373.CrossRefGoogle Scholar
Lorenz, E.N. 1963 Deterministic nonperiodic flow. J. Atmos. Sci. 20 (2), 130141.2.0.CO;2>CrossRefGoogle Scholar
Lueptow, R.M. 1995 Transducer resolution and the turbulent wall pressure spectrum. J. Acoust. Soc. Am. 97 (1), 370378.CrossRefGoogle Scholar
Lysenko, V.I. & Maslov, A.A. 1984 The effect of cooling on supersonic boundary-layer stability. J. Fluid Mech. 147, 3952.CrossRefGoogle Scholar
Mack, L.M. 1975 Linear stability theory and the problem of supersonic boundary-layer transition. AIAA J. 13 (3), 278289.CrossRefGoogle Scholar
Mack, L.M. 1984 Boundary-layer linear stability theory. Tech. Rep. California Inst of Tech Pasadena Jet Propulsion Lab.Google Scholar
Malik, M.R. 1990 Numerical methods for hypersonic boundary layer stability. J. Comput. Phys. 86 (2), 376413.CrossRefGoogle Scholar
Marineau, E.C., Grossir, G., Wagner, A., Leinemann, M., Radespiel, R., Tanno, H., Chynoweth, B.C., Schneider, S.P., Wagnild, R.M. & Casper, K.M. 2019 Analysis of second-mode amplitudes on sharp cones in hypersonic wind tunnels. J. Spacecr. Rockets 56 (2), 307318.CrossRefGoogle Scholar
Marineau, E.C., Moraru, G.C., Lewis, D.R., Norris, J.D., Lafferty, J.F. & Johnson, H.B. 2015 Investigation of Mach 10 boundary layer stability of sharp cones at angle-of-attack, Part I: experiments. In 53rd AIAA Aerospace Sciences Meeting, p. 1737.Google Scholar
Marineau, E.C., Moraru, G.C., Lewis, D.R., Norris, J.D., Lafferty, J.F., Wagnild, R.M. & Smith, J.A. 2014 Mach 10 boundary layer transition experiments on sharp and blunted cones. In 19th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, p. 3108.Google Scholar
Masutti, D., Spinosa, E., Chazot, O. & Carbonaro, M. 2012 Disturbance level characterization of a hypersonic blowdown facility. AIAA J. 50 (12), 27202730.CrossRefGoogle Scholar
Mons, V., Chassaing, J.C., Gomez, T. & Sagaut, P. 2016 Reconstruction of unsteady viscous flows using data assimilation schemes. J. Comput. Phys. 316, 255280.CrossRefGoogle Scholar
Mons, V., Wang, Q. & Zaki, T.A. 2019 Kriging-enhanced ensemble variational data assimilation for scalar-source identification in turbulent environments. J. Comput. Phys. 398, 108856.CrossRefGoogle Scholar
Park, J. & Zaki, T.A. 2019 Sensitivity of high-speed boundary-layer stability to base-flow distortion. J. Fluid Mech. 859, 476515.CrossRefGoogle Scholar
Parziale, N.J., Shepherd, J.E. & Hornung, H.G. 2014 Free-stream density perturbations in a reflected-shock tunnel. Exp. Fluids 55 (2), 1665.CrossRefGoogle Scholar
Parziale, N.J., Shepherd, J.E. & Hornung, H.G. 2015 Observations of hypervelocity boundary-layer instability. J. Fluid Mech. 781, 87112.CrossRefGoogle Scholar
Pate, S.R. 1980 Effects of wind tunnel disturbances on boundary-layer transition with emphasis on radiated noise: a review. Tech. Rep. ARO INC ARNOLD AFS TN.CrossRefGoogle Scholar
Phillips, O.M. 1960 On the generation of sound by supersonic turbulent shear layers. J. Fluid Mech. 9 (1), 128.CrossRefGoogle Scholar
Pinna, F. & Rambaud, P. 2013 Effects of shock on hypersonic boundary layer stability. Prog. Flight Phys. 5, 93106.CrossRefGoogle Scholar
Pruett, C.D. & Chang, C.-L. 1998 Direct numerical simulation of hypersonic boundary-layer flow on a flared cone. Theor. Comput. Fluid Dyn. 11 (1), 4967.CrossRefGoogle Scholar
Reshotko, E. 1976 Boundary-layer stability and transition. Annu. Rev. Fluid Mech. 8 (1), 311349.CrossRefGoogle Scholar
Saltzman, B. 1962 Finite amplitude free convection as an initial value problem—I. J. Atmos. Sci. 19 (4), 329341.2.0.CO;2>CrossRefGoogle Scholar
Saric, W.S., Reed, H.L. & Kerschen, E.J. 2002 Boundary-layer receptivity to freestream disturbances. Annu. Rev. Fluid Mech. 34 (1), 291319.CrossRefGoogle Scholar
Schneider, S.P. 2001 Effects of high-speed tunnel noise on laminar-turbulent transition. J. Spacecr. Rockets 38 (3), 323333.CrossRefGoogle Scholar
Schneider, S.P. 2015 Developing mechanism-based methods for estimating hypersonic boundary-layer transition in flight: the role of quiet tunnels. Prog. Aerosp. Sci. 72, 1729.CrossRefGoogle Scholar
da Silva, A.F.C. & Colonius, T. 2018 Ensemble-based state estimator for aerodynamic flows. AIAA J. 56 (7), 25682578.CrossRefGoogle Scholar
Sivasubramanian, J. & Fasel, H.F. 2015 Direct numerical simulation of transition in a sharp cone boundary layer at Mach 6: fundamental breakdown. J. Fluid Mech. 768, 175218.CrossRefGoogle Scholar
Thiele, T., Gülhan, A. & Olivier, H. 2018 Instrumentation and aerothermal postflight analysis of the rocket technology flight experiment ROTEX-T. J. Spacecr. Rockets 55 (5), 10501073.CrossRefGoogle Scholar
Thome, J., Dwivedi, A., Nichols, J.W. & Candler, G.V. 2018 Direct numerical simulation of BOLT hypersonic flight vehicle. In 2018 Fluid Dynamics Conference, p. 2894.Google Scholar
Ucinski, D. 2004 Optimal Measurement Methods for Distributed Parameter System Identification. CRC Press.CrossRefGoogle Scholar
Vishnampet, R., Bodony, D.J. & Freund, J.B. 2015 A practical discrete-adjoint method for high-fidelity compressible turbulence simulations. J. Comput. Phys. 285, 173192.CrossRefGoogle Scholar
Wang, M., Wang, Q. & Zaki, T.A. 2019 a Discrete adjoint of fractional-step incompressible Navier–Stokes solver in curvilinear coordinates and application to data assimilation. J. Comput. Phys. 396, 427450.CrossRefGoogle Scholar
Wang, M. & Zaki, T.A. 2021 State estimation in turbulent channel flow from limited observations. J. Fluid Mech. arXiv:2011.03711.Google Scholar
Wang, Q., Hasegawa, Y. & Zaki, T.A. 2019 b Spatial reconstruction of steady scalar sources from remote measurements in turbulent flow. J. Fluid Mech. 870, 316352.CrossRefGoogle Scholar
Wilson, A.D., Schultz, J.A. & Murphey, T.D. 2014 Trajectory synthesis for Fisher information maximization. IEEE Trans. Robot. 30 (6), 13581370.CrossRefGoogle ScholarPubMed
Yan, L., Duan, X., Liu, B. & Xu, J. 2018 Bayesian optimization based on K-optimality. Entropy 20 (8), 594.CrossRefGoogle ScholarPubMed
Zhao, L., Zhang, C.-B., Liu, J.-X. & Luo, J.-S. 2016 Improved algorithm for solving nonlinear parabolized stability equations. Chin. Phys. B 25 (8), 084701.CrossRefGoogle Scholar
Zhu, Y., Zhang, C., Chen, X., Yuan, H., Wu, J., Chen, S., Lee, C. & Gad-el Hak, M. 2016 Transition in hypersonic boundary layers: role of dilatational waves. AIAA J. 54 (10), 30393049.CrossRefGoogle Scholar