Hostname: page-component-65f69f4695-v4vvv Total loading time: 0 Render date: 2025-06-27T18:38:29.432Z Has data issue: false hasContentIssue false

Modulation of the instability growth at sequential heavy–light interfaces in a shocked dual layer

Published online by Cambridge University Press:  25 June 2025

Chenren Chen
Affiliation:
Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Xuan Li
Affiliation:
Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Yifan Ma
Affiliation:
Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Zhigang Zhai*
Affiliation:
Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Xisheng Luo*
Affiliation:
Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China State Key Laboratory of High-Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China
*
Corresponding authors: Xisheng Luo, xluo@ustc.edu.cn; Zhigang Zhai, sanjing@ustc.edu.cn
Corresponding authors: Xisheng Luo, xluo@ustc.edu.cn; Zhigang Zhai, sanjing@ustc.edu.cn

Abstract

We present a theoretical framework and validation for manipulating instability growth in shock-accelerated dual-layer material systems, which feature a light–heavy interface followed by two sequential heavy–light interfaces. An analytical model is first developed to predict perturbation evolution at the two heavy–light interfaces, explicitly incorporating the effects of reverberating waves within the dual-layer structure. The model identifies five distinct control regimes for instability modulation. Shock-tube experiments and numerical simulations are designed to validate these regimes, successfully realising all five predicted states. Notably, the selective growth stagnation of a perturbation at either the upstream or downstream heavy–light interface is realised numerically by tuning the initial separation distances of the three interfaces. This work elucidates the critical role of the wave dynamics in governing interface evolution of a shocked dual layer, offering insights for mitigating hydrodynamic instabilities in practical scenarios such as inertial confinement fusion.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abgrall, R. & Karni, S. 2001 Computations of compressible multifluids. J. Comput. Phys. 169 (2), 594623.10.1006/jcph.2000.6685CrossRefGoogle Scholar
Amendt, P. 2021 Entropy generation from hydrodynamic mixing in inertial confinement fusion indirect-drive targets. Phys. Plasmas 28 (7), 072701.CrossRefGoogle Scholar
Betti, R. & Hurricane, O.A. 2016 Inertial-confinement fusion with lasers. Nat. Phys. 12 (5), 435448.CrossRefGoogle Scholar
Billet, G. & Abgrall, R. 2003 An adaptive shock-capturing algorithm for solving unsteady reactive flows. Comput. Fluids 32 (10), 14731495.10.1016/S0045-7930(03)00004-5CrossRefGoogle Scholar
Bodner, S.E. et al. 1998 Direct-drive laser fusion: status and prospects. Phys. Plasmas 5 (5), 19011918.CrossRefGoogle Scholar
Brouillette, M. 2002 The Richtmyer–Meshkov instability. Annu. Rev. Fluid Mech. 34 (1), 445468.10.1146/annurev.fluid.34.090101.162238CrossRefGoogle Scholar
Cao, Q., Li, J., Wang, H., Zhai, Z. & Luo, X. 2024 Coupled Richtmyer–Meshkov and Kelvin–Helmholtz instability on a shock-accelerated inclined single-mode interface. J. Fluid Mech. 996, A37.10.1017/jfm.2024.710CrossRefGoogle Scholar
Charakhch’yan, A.A. 2000 Richtmyer–Meshkov instability of an interface between two media due to passage of two successive shocks. J. Appl. Mech. Tech. Phys. 41 (1), 2331.CrossRefGoogle Scholar
Charakhch’yan, A.A. 2001 Reshocking at the non-linear stage of Richtmyer–Meshkov instability. Plasma Phys. Control. Fusion 43 (9), 11691179.CrossRefGoogle Scholar
Chen, C., Li, J., Wang, H., Zhai, Z. & Luo, X. 2025 Attenuation of Richtmyer–Meshkov instability growth of fluid layer via double shock. Sci. China-Phys. Mech. Astron. 68 (4), 244711.10.1007/s11433-024-2592-5CrossRefGoogle Scholar
Chen, C., Li, J., Zhai, Z. & Luo, X. 2024 a Effects of disturbed transmitted shock and interface coupling on heavy gas layer evolution. Phys. Fluids 36 (8), 086108.10.1063/5.0215839CrossRefGoogle Scholar
Chen, C., Wang, H., Zhai, Z. & Luo, X. 2023 a Attenuation of perturbation growth of single-mode sf $_6$ -air interface through reflected rarefaction waves. J. Fluid Mech. 969, R1.10.1017/jfm.2023.578CrossRefGoogle Scholar
Chen, C., Wang, H., Zhai, Z. & Luo, X. 2024 b Mode coupling between two different interfaces of a gas layer subject to a shock. J. Fluid Mech. 984, A38.10.1017/jfm.2024.232CrossRefGoogle Scholar
Chen, C., Xing, Y., Wang, H., Zhai, Z. & Luo, X. 2023b Freeze-out of perturbation growth of single-mode helium–air interface through reflected shock in Richtmyer–Meshkov flows. J. Fluid Mech. 956, R2.10.1017/jfm.2023.9CrossRefGoogle Scholar
Cong, Z., Guo, X., Zhou, Z., Cheng, W. & Si, T. 2024 Freeze-out of perturbation growth for shocked heavy fluid layers by eliminating reverberating waves. J. Fluid Mech. 987, A10.10.1017/jfm.2024.390CrossRefGoogle Scholar
Dimonte, G. & Ramaprabhu, P. 2010 Simulations and model of the nonlinear Richtmyer–Meshkov instability. Phys. Fluids 22 (1), 014104.CrossRefGoogle Scholar
Ding, J., Si, T., Chen, M., Zhai, Z., Lu, X. & Luo, X. 2017 On the interaction of a planar shock with a three-dimensional light gas cylinder. J. Fluid Mech. 828, 289317.CrossRefGoogle Scholar
Ishizaki, R. & Nishihara, K. 1997 Propagation of a rippled shock wave driven by nonuniform laser ablation. Phys. Rev. Lett. 78 (10), 19201923.CrossRefGoogle Scholar
Jacobs, J.W., Jenkins, D.G., Klein, D.L. & Benjamin, R.F. 1995 Nonlinear growth of the shock-accelerated instability of a thin fluid layer. J. Fluid Mech. 295 (−1), 2342.CrossRefGoogle Scholar
Jacobs, J.W., Klein, D.L., Jenkins, D.G. & Benjamin, R.F. 1993 Instability growth patterns of a shock-accelerated thin fluid layer. Phys. Rev. Lett. 70 (5), 583586.10.1103/PhysRevLett.70.583CrossRefGoogle ScholarPubMed
Jiang, G. & Shu, C. 1996 Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126 (1), 202228.CrossRefGoogle Scholar
Kritcher, A.L. et al. 2022 Design of inertial fusion implosions reaching the burning plasma regime. Nat. Phys. 18 (3), 251258.10.1038/s41567-021-01485-9CrossRefGoogle Scholar
Kuranz, C. et al. 2018 How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants. Nat. Commun. 9 (1), 1564.10.1038/s41467-018-03548-7CrossRefGoogle ScholarPubMed
Li, J., Cao, Q., Wang, H., Zhai, Z. & Luo, X. 2023 New interface formation method for shock-interface interaction studies. Exp. Fluids 64 (11), 170.CrossRefGoogle Scholar
Li, J., Chen, C., Zhai, Z. & Luo, X. 2024 Effects of compressibility on Richtmyer–Meshkov instability of heavy/light interface. Phys. Fluids 36 (5), 056104.CrossRefGoogle Scholar
Liang, Y. 2022 The phase effect on the Richtmyer–Meshkov instability of a fluid layer. Phys. Fluids 34 (3), 034106.10.1063/5.0082945CrossRefGoogle Scholar
Liang, Y. & Luo, X. 2021 Shock-induced dual-layer evolution. J. Fluid Mech. 929, R3.CrossRefGoogle Scholar
Liang, Y. & Luo, X. 2022 On shock-induced evolution of a gas layer with two fast/slow interfaces. J. Fluid Mech. 939, A16.10.1017/jfm.2022.213CrossRefGoogle Scholar
Liang, Y. & Luo, X. 2023 a Hydrodynamic instabilities of two successive slow/fast interfaces induced by a weak shock. J. Fluid Mech. 955, A40.CrossRefGoogle Scholar
Liang, Y. & Luo, X. 2023 b Review on hydrodynamic instabilities of a shocked gas layer. Sci. China-Phys. Mech. Astron. 66 (10), 104701.10.1007/s11433-023-2162-0CrossRefGoogle Scholar
Liu, L., Liang, Y., Ding, J., Liu, N. & Luo, X. 2018 a An elaborate experiment on the single-mode Richtmyer–Meshkov instability. J. Fluid Mech. 853, R2.CrossRefGoogle Scholar
Liu, W., Li, X., Yu, C., Fu, Y., Wang, P., Wang, L. & Ye, W. 2018 b Theoretical study on finite-thickness effect on harmonics in Richtmyer-Meshkov instability for arbitrary Atwood numbers. Phys. Plasmas 25 (12), 122103.10.1063/1.5053766CrossRefGoogle Scholar
Lobatchev, V. & Betti, R. 2000 Ablative stabilization of the deceleration phase Rayleigh–Taylor instability. Phys. Rev. Lett. 85 (21), 45224525.10.1103/PhysRevLett.85.4522CrossRefGoogle ScholarPubMed
Merritt, E.C. et al. 2023 Same-sided successive-shock HED instability experiments. Phys. Plasmas 30 (7), 072108.CrossRefGoogle Scholar
Meshkov, E.E. 1969 Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 4 (5), 101104.CrossRefGoogle Scholar
Meyer, K.A. & Blewett, P.J. 1972 Numerical investigation of the stability of a shock-accelerated interface between two fluids. Phys. Fluids 15 (5), 753759.10.1063/1.1693980CrossRefGoogle Scholar
Mikaelian, K.O. 2010 Analytic approach to nonlinear hydrodynamic instabilities driven by time-dependent accelerations. Phys. Rev. E 81 (1), 016325.CrossRefGoogle ScholarPubMed
Mikaelian, K.O. 1985 Richtmyer–Meshkov instabilities in stratified fluids. Phys. Rev. A 31 (1), 410419.10.1103/PhysRevA.31.410CrossRefGoogle ScholarPubMed
Mikaelian, K.O. 1996 Numerical simulations of Richtmyer–Meshkov instabilities in finite-thickness fluid layers. Phys. Fluids 8 (5), 12691292.10.1063/1.868898CrossRefGoogle Scholar
Mikaelian, K.O. 2025 Feedthrough and suppression of Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Fluids 37 (3), 032114.CrossRefGoogle Scholar
Qiao, X. & Lan, K. 2021 Novel target designs to mitigate hydrodynamic instabilities growth in inertial confinement fusion. Phys. Rev. Lett. 126 (18), 185001.CrossRefGoogle ScholarPubMed
Ranjan, D., Oakley, J. & Bonazza, R. 2011 Shock-bubble interactions. Annu. Rev. Fluid Mech. 43 (1), 117140.CrossRefGoogle Scholar
Richtmyer, R.D. 1960 Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Maths 13 (2), 297319.10.1002/cpa.3160130207CrossRefGoogle Scholar
Schalles, M., Louie, C., Peabody, K., Sadler, J., Zhou, Y. & Jacobs, J. 2024 Shock tube experiments on the three-layer Richtmyer–Meshkov instability. Phys. Fluids 36 (1), 014126.10.1063/5.0179296CrossRefGoogle Scholar
Schill, W.J. et al. 2024 Suppression of Richtmyer-Meshkov instability via special pairs of shocks and phase transitions. Phys. Rev. Lett. 132 (2), 024001.10.1103/PhysRevLett.132.024001CrossRefGoogle ScholarPubMed
Spears, B.K. et al. 2014 Mode 1 drive asymmetry in inertial confinement fusion implosions on the national ignition facility. Phys. Plasmas 21 (4), 042702.CrossRefGoogle Scholar
Sterbentz, D.M., Jekel, C.F., White, D.A., Aubry, S., Lorenzana, H.E. & Belof, J.L. 2022 Design optimization for Richtmyer–Meshkov instability suppression at shock-compressed material interfaces. Phys. Fluids 34 (8), 082109.CrossRefGoogle Scholar
Urzay, J. 2018 Supersonic combustion in air-breathing propulsion systems for hypersonic flight. Annu. Rev. Fluid Mech. 50 (1), 593627.10.1146/annurev-fluid-122316-045217CrossRefGoogle Scholar
Vandenboomgaerde, M., Mügler, C. & Gauthier, S. 1998 Impulsive model for the Richtmyer–Meshkov instability. Phys. Rev. E 58 (2), 18741882.10.1103/PhysRevE.58.1874CrossRefGoogle Scholar
Velikovich, A. & Phillips, L. 1996 Instability of a plane centered rarefaction wave. Phys. Fluids 8 (4), 11071118.10.1063/1.868889CrossRefGoogle Scholar
West, S.R., Sadler, J.D., Powell, P.D. & Zhou, Y. 2024 Shock-driven three-fluid mixing with various chevron interface configurations. Phys. Fluids 36 (10), 104132.10.1063/5.0233219CrossRefGoogle Scholar
Zhai, Z., Chen, C., Xing, Y., Li, J., Cao, Q., Wang, H. & Luo, X. 2025 Manipulation of Richtmyer–Meshkov instability on a heavy–light interface via successive shocks. J. Fluid Mech. 1003, A9.CrossRefGoogle Scholar
Zhou, Y. 2017a Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I. Phys. Rep. 720-722, 1136.Google Scholar
Zhou, Y. 2017 b Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II. Phys. Rep. 723-725, 1160.Google Scholar
Zhou, Y., Sadler, J.D. & Hurricane, O.A. 2025 Instabilities and mixing in inertial confinement fusion. Annu. Rev. Fluid Mech. 57 (1), 197225.10.1146/annurev-fluid-022824-110008CrossRefGoogle Scholar
Zhou, Y. et al. 2021 Rayleigh–Taylor and Richtmyer–Meshkov instabilities: A journey through scales. Physica D 423, 132838.10.1016/j.physd.2020.132838CrossRefGoogle Scholar
Zylstra, A.B. et al. 2022 Burning plasma achieved in inertial fusion. Nature 601 (7894), 542548.CrossRefGoogle ScholarPubMed