Hostname: page-component-7b9c58cd5d-nzzs5 Total loading time: 0 Render date: 2025-03-13T10:54:49.111Z Has data issue: false hasContentIssue false

Mixing of active scalars due to random weak shock waves in two dimensions

Published online by Cambridge University Press:  13 March 2025

Joaquim P. Jossy
Affiliation:
Department of Applied Mechanics, Indian Institute of Technology Delhi, New Delhi 110016, India
Prateek Gupta*
Affiliation:
Department of Applied Mechanics, Indian Institute of Technology Delhi, New Delhi 110016, India
*
Corresponding author: Prateek Gupta, prgupta@am.iitd.ac.in

Abstract

In this work, we investigate the mixing of active scalars in two dimensions by the stirring action of stochastically generated weak shock waves. We use Fourier pseudospectral direct numerical simulations of the interaction of shock waves with two non-reacting species to analyse the mixing dynamics for different Atwood numbers (At). Unlike passive scalars, the presence of density gradients in active scalars alters the molecular diffusion term and makes the species diffusion nonlinear, introducing a concentration gradient-driven term and a density gradient-driven nonlinear dissipation term in the concentration evolution equation. We show that the direction of concentration gradient causes the interface across which molecular diffusion occurs to expand outwards or inwards, even without any stirring action. Shock waves enhance the mixing process by increasing the perimeter of the interface and by sustaining concentration gradients. Negative Atwood number mixtures sustain concentration gradients for a longer time than positive Atwood number mixtures due to the so-called nonlinear dissipation terms. We estimate the time until that when the action of stirring is dominant over molecular mixing. We also highlight the role of baroclinicity in increasing the interface perimeter in the stirring dominant regime. We compare the stirring effect of shock waves on mixing of passive scalars with active scalars and show that the vorticity generated by baroclinicity is responsible for the folding and stretching of the interface in the case of active scalars. We conclude by showing that lighter mixtures with denser inhomogeneities ($At\lt 0$) take a longer time to homogenise than the denser mixtures with lighter inhomogeneities ($At\gt 0$).

JFM classification

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abarzhi, S. 2002 A new type of the evolution of the bubble front in the Richtmyer–Meshkov instability. Phys. Lett. A 294 (2), 95100.CrossRefGoogle Scholar
Al-Thehabey, O.Y. 2020 Modeling the amplitude growth of Richtmyer–Meshkov instability in shock–flame interactions. Phys. Fluids 32 (10), 104103.CrossRefGoogle Scholar
Arnett, D. 2000 The role of mixing in astrophysics. Astrophys. J. Suppl. 127 (2), 213217.CrossRefGoogle Scholar
Atkinson, C., Reuter, G.E. & Ridler-Rowe, C. 1981 Traveling wave solution for some nonlinear diffusion equations. SIAM J. Math. Anal. 12 (6), 880892.CrossRefGoogle Scholar
Augier, P., Mohanan, A.V. & Lindborg, E. 2019 Shallow water wave turbulence. J. Fluid Mech. 874, 11691196.CrossRefGoogle Scholar
Boyd, J. 2001 Chebyshev and Fourier Spectral Methods. Courier Corporation.Google Scholar
Broadwell, J. & Breidenthal, R. 1984 Structure and mixing of a transverse jet in incompressible flow. J. Fluid Mech. 148, 405412.CrossRefGoogle Scholar
Brouillette, M. 2002 The Richtmyer–Meshkov instability. Annu. Rev. Fluid Mech. 34 (1), 445468.CrossRefGoogle Scholar
Buch, K.A. & Dahm, W.J. 1996 Experimental study of the fine-scale structure of conserved scalar mixing in turbulent shear flows. Part 1. Sc [Gt ] 1. J. Fluid Mech. 317, 2171.CrossRefGoogle Scholar
Burrows, A. 2000 Supernova explosions in the Universe. Nature 403 (6771), 727733.CrossRefGoogle ScholarPubMed
Cho, H., Venturi, D. & Karniadakis, G. E. 2014 Statistical analysis and simulation of random shocks in stochastic burgers equation, Proc. R. Soc. Lond. A: Math. Phys. Engng Sci. 470 (2171), 20140080.Google Scholar
Dimotakis, P.E. 2005 Turbulent mixing. Annu. Rev. Fluid Mech. 37 (1), 329356.CrossRefGoogle Scholar
Donzis, D.A. 2012 Shock structure in shock-turbulence interactions. Phys. Fluids 24 (12), 126101.CrossRefGoogle Scholar
Eckart, C. 1948 An analysis of the stirring and mixing processes in incompressible fluids. J. Mar. Res. 7, 265275.Google Scholar
Eswaran, V. & Pope, S.B. 1988 An examination of forcing in direct numerical simulations of turbulence. Comput. Fluids 16 (3), 257278.CrossRefGoogle Scholar
Gao, F., Zhang, Y., He, Z. & Tian, B. 2016 Formula for growth rate of mixing width applied to Richtmyer–Meshkov instability. Phys. Fluids 28 (11), 114101.CrossRefGoogle Scholar
Gao, X., Bermejo-Moreno, I. & Larsson, J. 2020 Parametric numerical study of passive scalar mixing in shock turbulence interaction. J. Fluid Mech. 895, A21.CrossRefGoogle Scholar
Gupta, P. & Scalo, C. 2018 Spectral energy cascade and decay in nonlinear acoustic waves. Phys. Rev. E 98 (3), 033117.CrossRefGoogle Scholar
Herrmann, M., Moin, P. & Abarzhi, S.I. 2008 Nonlinear evolution of the Richtmyer–Meshkov instability. J. Fluid Mech. 612, 311338.CrossRefGoogle Scholar
Hirschfelder, J.O., Curtiss, C.F. & Bird, R. 1964 The Molecular Theory of Gases and Liquids. John Wiley & Sons.Google Scholar
John, J.P., Donzis, D.A. & Sreenivasan, K.R. 2019 Solenoidal scaling laws for compressible mixing. Phys. Rev. Lett. 123 (22), 224501.CrossRefGoogle Scholar
Jossy, J.P. & Gupta, P. 2023 Baroclinic interaction of forced shock waves with random thermal gradients. Phys. Fluids 35 (5), 056114.CrossRefGoogle Scholar
Kundu, P.K., Cohen, I.M. & Dowling, D. R. 2015 Fluid Mechanics. Academic press.Google Scholar
Larsson, J., Bermejo-Moreno, I. & Lele, S. K. 2013 Reynolds- and Mach-number effects in canonical shock–turbulence interaction. J. Fluid Mech. 717, 293321.CrossRefGoogle Scholar
Li, H., Tian, B., He, Z. & Zhang, Y. 2021 Growth mechanism of interfacial fluid-mixing width induced by successive nonlinear wave interactions. Phys. Rev. E 103 (5), 053109.CrossRefGoogle ScholarPubMed
Liepmann, H. W. & Roshko, A. 2001 Elements of Gasdynamics. Courier Corporation.Google Scholar
Liu, H., Yu, B., Zhang, B. & Xiang, Y. 2022 On mixing enhancement by secondary baroclinic vorticity in a shock–bubble interaction. J. Fluid Mech. 931, A17.CrossRefGoogle Scholar
Meshkov, E.E. 1969 Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 4 (5), 101104.CrossRefGoogle Scholar
Meunier, P. & Villermaux, E. 2003 How vortices mix. J. Fluid Mech. 476, 213222.CrossRefGoogle Scholar
Miura, H. & Kida, S. 1995 Acoustic energy exchange in compressible turbulence. Phys. Fluids 7 (7), 17321742.CrossRefGoogle Scholar
Ni, Q. 2016 Compressible turbulent mixing: effects of compressibility. Phys. Rev. E 93 (4), 043116.CrossRefGoogle ScholarPubMed
Pantano, C., Sarkar, S. & Williams, F. 2003 Mixing of a conserved scalar in a turbulent reacting shear layer. J. Fluid Mech. 481, 291328.CrossRefGoogle Scholar
Poinsot, T. & Veynante, D. 2005 Theoretical and Numerical Combustion. RT Edwards, Inc.Google Scholar
Richtmyer, R.D. 1954 Taylor instability in shock acceleration of compressible fluids. Tech. Commun. Pure Appl. Maths 13, 297319.Google Scholar
Samtaney, R., Pullin, D.I. & Kosović, B. 2001 Direct numerical simulation of decaying compressible turbulence and shocklet statistics. Phys. Fluids 13 (5), 14151430.CrossRefGoogle Scholar
Sarkar, S. 1995 The stabilizing effect of compressibility in turbulent shear flow. J. Fluid Mech. 282, 163186.CrossRefGoogle Scholar
Sarkar, S., Erlebacher, G., Hussaini, M. & Kreiss, H.O. 1991 The analysis and modelling of dilatational terms in compressible turbulence. J. Fluid Mech. 227, 473493.CrossRefGoogle Scholar
Schumacher, J., Sreenivasan, K.R. & Yeung, P. 2005 Very fine structures in scalar mixing. J. Fluid Mech. 531, 113122.CrossRefGoogle Scholar
Schumacher, J. & Sreenivasan, K.R. 2005 Statistics and geometry of passive scalars in turbulence. Phys. Fluids 17 (12), 125107.CrossRefGoogle Scholar
Sreenivasan, K.R. 2019 Turbulent mixing: a perspective. Proc. Natl Acad. Sci. USA 116 (37), 1817518183.CrossRefGoogle ScholarPubMed
Tennekes, H. & Lumley, J.L. 1972 A First Course in Turbulence. MIT Press.CrossRefGoogle Scholar
Thomas, V.A. & Kares, R.J. 2012 Drive asymmetry and the origin of turbulence in an ICF implosion. Phys. Rev. Lett. 109 (7), 075004.CrossRefGoogle Scholar
Tian, Y., Jaberi, F.A., Li, Z. & Livescu, D. 2017 Numerical study of variable density turbulence interaction with a normal shock wave. J. Fluid Mech. 829, 551588.CrossRefGoogle Scholar
Tomkins, C., Kumar, S., Orlicz, G. & Prestridge, K. 2008 An experimental investigation of mixing mechanisms in shock-accelerated flow. J. Fluid Mech. 611, 131150.CrossRefGoogle Scholar
Villermaux, E. 2019 Mixing versus stirring. Annu. Rev. Fluid Mech. 51 (1), 245273.CrossRefGoogle Scholar
Wong, M.L., Baltzer, J.R., Livescu, D. & Lele, S.K. 2022 Analysis of second moments and their budgets for Richtmyer–Meshkov instability and variable-density turbulence induced by reshock. Phys. Rev. Fluids 7 (4), 044602.CrossRefGoogle Scholar
Yang, J., Kubota, T. & Zukoski, E.E. 1993 Applications of shock-induced mixing to supersonic combustion. AIAA J. 31 (5), 854862.CrossRefGoogle Scholar
Yu, B., Liu, H. & Liu, H. 2021 Scaling behavior of density gradient accelerated mixing rate in shock bubble interaction. Phys. Rev. Fluids 6 (6), 064502.CrossRefGoogle Scholar
Yuan, M., Zhao, Z., Liu, L., Wang, P., Liu, N.-S. & Lu, X.-Y. 2023 Instability evolution of a shock-accelerated thin heavy fluid layer in cylindrical geometry. J. Fluid Mech. 969, A6.CrossRefGoogle Scholar
Zhang, Q. 1998 Analytical solutions of layzer-type approach to unstable interfacial fluid mixing. Phys. Rev. Lett. 81 (16), 33913394.CrossRefGoogle Scholar
Zhou, Y. 2017 Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II. Phys. Rep. 723, 1160.Google Scholar
Zhou, Y., et al. 2021 Rayleigh–Taylor and Richtmyer–Meshkov instabilities: a journey through scales. Phys. D: Nonlinear Phenom. 423, 132838.CrossRefGoogle Scholar
Zhou, Y. 2024 Hydrodynamic Instabilities and Turbulence: Rayleigh–Taylor, Richtmyer–Meshkov, and Kelvin–Helmholtz Mixing. Cambridge University Press.CrossRefGoogle Scholar
Zhou, Y., Sadler, J. D. & Hurricane, O. A. 2025 Instabilities and mixing in inertial confinement fusion. Annu. Rev. Fluid Mech. 57.CrossRefGoogle Scholar