Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T16:51:50.382Z Has data issue: false hasContentIssue false

Levitation of a drop over a moving surface

Published online by Cambridge University Press:  25 September 2013

Henri Lhuissier*
Affiliation:
Physics of Fluids Group, Faculty of Science and Technology, J.M. Burgers Center for Fluid Dynamics, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
Yoshiyuki Tagawa*
Affiliation:
Physics of Fluids Group, Faculty of Science and Technology, J.M. Burgers Center for Fluid Dynamics, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-city, Tokyo, Japan
Tuan Tran
Affiliation:
Physics of Fluids Group, Faculty of Science and Technology, J.M. Burgers Center for Fluid Dynamics, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
Chao Sun*
Affiliation:
Physics of Fluids Group, Faculty of Science and Technology, J.M. Burgers Center for Fluid Dynamics, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
*
Email addresses for correspondence: h.lhuissier@utwente.nl, tagawayo@cc.tuat.ac.jp, c.sun@utwente.nl
Email addresses for correspondence: h.lhuissier@utwente.nl, tagawayo@cc.tuat.ac.jp, c.sun@utwente.nl
Email addresses for correspondence: h.lhuissier@utwente.nl, tagawayo@cc.tuat.ac.jp, c.sun@utwente.nl

Abstract

We investigate the levitation of a drop gently deposited onto the inner wall of a rotating hollow cylinder. For a sufficiently large velocity of the wall, the drop steadily levitates over a thin air film and reaches a stable angular position in the cylinder, where the drag and lift balance the weight of the drop. Interferometric measurements yield the three-dimensional (3D) air film thickness under the drop and reveal the asymmetry of the profile along the direction of the wall motion. A two-dimensional (2D) model is presented which explains the levitation mechanism, captures the main characteristics of the air film shape and predicts two asymptotic regimes for the film thickness ${h}_{0} $: for large drops ${h}_{0} \sim {\mathit{Ca}}^{2/ 3} { \kappa }_{b}^{- 1} $, as in the Bretherton problem, where $\mathit{Ca}$ is the capillary number based on the air viscosity and ${\kappa }_{b} $ is the curvature at the bottom of the drop; for small drops ${h}_{0} \sim {\mathit{Ca}}^{4/ 5} {(a{\kappa }_{b} )}^{4/ 5} { \kappa }_{b}^{- 1} $, where $a$ is the capillary length.

Type
Rapids
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aussillous, P & Quéré, D. 2001 Liquid marbles. Nature 411 (6840), 924927.Google Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Bluemink, J. J., Lohse, D., Prosperetti, A. & van Wijngaarden, L. 2008 A sphere in a uniformly rotating or shearing flow. J. Fluid Mech. 600, 201233.Google Scholar
Bluemink, J. J., Lohse, D., Prosperetti, A. & van Wijngaarden, L. 2009 Drag and lift forces on particles in a rotating flow. J. Fluid Mech. 643, 131.Google Scholar
Bluemink, J. J., van Nierop, E. A., Luther, S., Deen, N. G., Magnaudet, J., Prosperetti, A. & Lohse, D. 2005 Asymmetry-induced particle drift in a rotating flow. Phys. Fluids 17 (7), 072106.CrossRefGoogle Scholar
Bretherton, F. P. 1961 The motion of long bubbles in tubes. J. Fluid Mech. 10, 166188.Google Scholar
Couder, Y., Fort, E., Gautier, C. H. & Boudaoud, A. 2005 From bouncing to floating: noncoalescence of drops on a fluid bath. Phys. Rev. Lett. 94 (17) 177801-(4).Google Scholar
Dell’Aversana, P., Banavar, J. R. & Koplik, J. 1996 Suppression of coalescence by shear and temperature gradients. Phys. Fluids 8, 1528.Google Scholar
Dowson, D & Taylor, C. M. 1979 Cavitation in bearings. Annu. Rev. Fluid Mech. 11, 3565.Google Scholar
Duchesne, A., Savaro, C., Lebon, L., Pirat, C. & Limat, L. 2013 Multiple rotations of a drop rolling inside a horizontal circular hydraulic jump. Eur. Phys. Lett. 102 (6), 64001.Google Scholar
Landau, L. & Levich, B. 1942 Dragging of a liquid by a moving plate. Acta Physicochim. USSR 17, 4254.Google Scholar
Neitzel, G. P. & Dell’Aversana, P. 2002 Noncoalescence and nonwetting behaviour of liquids. Annu. Rev. Fluid Mech. 34, 267289.Google Scholar
Pirat, C., Lebon, L., Fruleux, A., Roche, J. -S. & Limat, L. 2010 Gyroscopic instability of a drop trapped inside an inclined circular hydraulic jump. Phys. Rev. Lett. 105 (8), 084503.CrossRefGoogle ScholarPubMed
Quéré, D. 2013 Leidenfrost dynamics. Annu. Rev. Fluid Mech. 45, 197215.Google Scholar
Smith, M. K. & Neitzel, G. P. 2006 Multiscale modelling in the numerical computation of isothermal non-wetting. J. Fluid Mech. 554, 6783.Google Scholar
Sreenivas, K. R., De, P. K. & Arakeri, J. H. 1999 Levitation of a drop over a film flow. J. Fluid Mech. 380, 297307.CrossRefGoogle Scholar
Tagawa, Y., van der Molen, J., van Wijngaarden, L. & Sun, C. 2013 Wall forces on a sphere in a rotating liquid-filled cylinder. Phys. Fluids 25 (6), 063302.Google Scholar
Tran, T., de Maleprade, H., Sun, C. & Lohse, D. 2013 Air entrainment during impact of droplets on liquid surfaces. J. Fluid Mech. 726, R3.Google Scholar
Tran, T., Staat, H., Prosperetti, A., Sun, C. & Lohse, D. 2012 Drop Impact on Superheated Surfaces. Phys. Rev. Lett. 108 (3), 036101.Google Scholar
van der Veen, R. C. A., Tran, T., Lohse, D. & Sun, C. 2012 Direct measurements of air layer profiles under impacting droplets using high-speed colour interferometry. Phys. Rev. E 85 (2), 026315.Google Scholar
Witelski, T. P. 1998 Dynamics of air bearing sliders. Phys. Fluids 10 (3), 698708.Google Scholar