Published online by Cambridge University Press: 31 May 2011
We investigate the organization of the momentum-carrying eddies in turbulent Couette–Poiseuille flows. The study relies on a direct numerical simulation (DNS) database covering a wide range of flow configurations from pure Couette to pure Poiseuille flows, at Reτ ≈ 250 (based on the flow properties at the stationary wall). The study highlights the occurrence of streaky patterns of alternating high and low momentum throughout the channel for all flow configurations, except near zeros of the mean shear, where streaks are suppressed. The mean streak spacing shows a relatively universal distribution in the core of the channel, where it ranges from 50 to 100 local viscous units. The validity of the local viscous scaling in collapsing flow features at different wall distances is confirmed by the analysis of the spanwise velocity spectra, which also highlights (in the case of Couette-like flows) the onset of a secondary low-wavenumber flow mode, superposed on the high-wavenumber flow mode that is responsible for the inner-layer dynamics. The effect of the former mode on the latter is studied by means of the two-point amplitude modulation coefficient, which brings to light a nonlinear modulation phenomenon. Physical mechanisms to explain the modulation effect are proposed, based on the interpretation of the conditional average events. Note that, although similar mechanisms have been previously observed in high-Reynolds-number turbulent boundary layers and channels, the modulation effect is here rather associated with the intrinsic large-scale dynamics of Couette-like flows, and takes place at DNS-accessible Reynolds numbers. We thus believe that the study of Couette-like flows may give an alternative avenue for probing inner/outer interaction effects than canonical channel flows.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.