Hostname: page-component-68c7f8b79f-qcl88 Total loading time: 0 Render date: 2025-12-19T11:46:02.790Z Has data issue: false hasContentIssue false

Interfacial deformation and energy exchange in free-surface turbulence

Published online by Cambridge University Press:  19 December 2025

Andre Calado*
Affiliation:
Department of Mechanical and Aerospace Engineering, The George Washington University, Washington D.C., USA
Elias Balaras
Affiliation:
Department of Mechanical and Aerospace Engineering, The George Washington University, Washington D.C., USA
*
Corresponding author: Andre Calado, andre.calado@gwu.edu

Abstract

This study investigates the dynamics of free-surface turbulence (FST) using direct numerical simulations (DNS). We focus on the energy exchange between the deformed free-surface and underlying turbulence, examining the influence of high Reynolds (${\textit{Re}}$) and Weber (${\textit{We}}$) numbers at low to moderate Froude (${\textit{Fr}}$) numbers. The two-fluid DNS of FST at the simulated conditions is able to incorporate air entrainment effects in a statistical steady state. Results reveal that a high ${\textit{We}}$ number primarily affects entrained bubble shapes (sphericity), while ${\textit{Fr}}$ significantly alters free-surface deformation, two-dimensional compressibility and turbulent kinetic energy (TKE) modulation. Vortical structures are mainly oriented parallel to the interface. At lower ${\textit{Fr}}$, kinetic energy is redistributed between horizontal and vertical components, aligning with rapid distortion theory, whereas higher ${\textit{Fr}}$ preserves isotropy near the surface. Evidence of a reverse or dual energy cascade is verified through third-order structure functions, with upscale transfer near the integral length scale, and enhanced vertical kinetic energy in upwelling eddies. Phase-based discrete wavelet transforms of TKE show weaker decay at the smallest scales near the interface, suggesting contributions from gravitational energy conversion and reduced dissipation. The wavelet energy spectra also exhibits different scaling laws across the wavenumber range, with a $-3$ slope within the inertial subrange. These findings highlight scale- and proximity-dependent effects on two-phase TKE transport, with implications for subgrid modelling.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alexakis, A. & Biferale, L. 2018 Cascades and transitions in turbulent flows. Phys. Rep. 767–769, 1101.10.1016/j.physrep.2018.08.001CrossRefGoogle Scholar
André, M.A. & Bardet, P.M. 2017 Free surface over a horizontal shear layer: vorticity generation and air entrainment mechanisms. J. Fluid Mech. 813, 10071044.10.1017/jfm.2016.822CrossRefGoogle Scholar
Babiker, O.M., Bjerkebaek, I., Xuan, A., Shen, L. & Ellingsen, S. 2023 Vortex imprints on a free surface as proxy for surface divergence. J. Fluid Mech. 964, 2.10.1017/jfm.2023.370CrossRefGoogle Scholar
Boffetta, G., Davoudi, J., Eckhardt, B. & Schumacher, J. 2004 Lagrangian tracers on a surface flow: the role of time correlations. Phys. Rev. Lett. 93 (13), 134501.10.1103/PhysRevLett.93.134501CrossRefGoogle ScholarPubMed
Bolgiano, R. 1959 Turbulent spectra in a stably stratified atmosphere. J. Geophys. Res. 64 (12), 22262229.10.1029/JZ064i012p02226CrossRefGoogle Scholar
Brocchini, M. & Peregrine, D.H. 2001 a The dynamics of strong turbulence at free surfaces. Part 2. Free-surface boundary conditions. J. Fluid Mech. 449, 255290.10.1017/S0022112001006024CrossRefGoogle Scholar
Brocchini, M. & Peregrine, D.H. 2001 b The dynamics of strong turbulence at free surfaces. Part 1. Description. J. Fluid Mech. 449, 225254.10.1017/S0022112001006012CrossRefGoogle Scholar
Bunner, B. & Tryggvason, G. 2002 Dynamics of homogeneous bubbly flows part 2. Velocity fluctuations. J. Fluid Mech. 466, 5384.10.1017/S0022112002001180CrossRefGoogle Scholar
Calado, A. & Balaras, E. 2024 a Dynamics of bubble deformation and breakup in decaying isotropic turbulence. Phys. Rev. Fluids 9, 123604.10.1103/PhysRevFluids.9.123604CrossRefGoogle Scholar
Calado, A. & Balaras, E. 2024 b High-fidelity simulations of submerged turbulence interacting with a free surface. Phys. Rev. Fluids 9, 110508.10.1103/PhysRevFluids.9.110508CrossRefGoogle Scholar
Calado, A., Yildiran, I. & Balaras, E. 2025 An efficient computational method for studying the interaction of strong turbulence with a free-surface. Comput. Fluids 302, 106836.10.1016/j.compfluid.2025.106836CrossRefGoogle Scholar
Cannon, I., Soligo, G. & Rosti, M.E. 2024 Morphology of clean and surfactant-laden droplets in homogeneous isotropic turbulence. J. Fluid Mech. 987, A31.10.1017/jfm.2024.380CrossRefGoogle Scholar
Carroll, P.L. & Blanquart, G. 2013 A proposed modification to Lundgren’s physical space velocity forcing method for isotropic turbulence. Phys. Fluids 25 (10), 105114.10.1063/1.4826315CrossRefGoogle Scholar
Chang, Y.C., Hou, T.Y., Merriman, B. & Osher, S. 1996 A level set formulation of Eulerian interface capturing methods for incompressible fluid flows. J. Comput. Phys. 124, 449464.10.1006/jcph.1996.0072CrossRefGoogle Scholar
Chanson, H. 1995 Air bubble entrainment in free-surface turbulent flows. Tech. Rep. No. CH46/95. Department of Civil Engineering, The University of Queensland.Google Scholar
Chertkov, M., Kolokolov, I. & Vergassola, M. 1998 Inverse versus direct cascades in turbulent advection. Phys. Rev. Lett. 80, 512515.10.1103/PhysRevLett.80.512CrossRefGoogle Scholar
Clift, R., Grace, J.R. & Weber, M.E. 2005 Bubbles, Drops, and Particles. Dover.Google Scholar
Cressman, J.R., Davoudi, J., Goldburg, W.I. & Schumacher, J. 2004 Eulerian and Lagrangian studies in surface flow turbulence. New J. Phys. 6 (1), 53.10.1088/1367-2630/6/1/053CrossRefGoogle Scholar
Crialesi-Esposito, M., Chibbaro, S. & Brandt, L. 2023 The interaction of droplet dynamics and turbulence cascade. Commun. Phys. 6 (1), 5.10.1038/s42005-022-01122-8CrossRefGoogle Scholar
Deane, G.B. & Stokes, M.D. 2002 Scale dependence of bubble creation mechanisms in breaking waves. Nature 418, 839844.10.1038/nature00967CrossRefGoogle ScholarPubMed
Dhruv, A., Balaras, E., Riaz, A. & Kim, J. 2019 A formulation for high-fidelity simulations of pool boiling in low gravity. Intl J. Multiphas. Flow 120, 103099.10.1016/j.ijmultiphaseflow.2019.103099CrossRefGoogle Scholar
Dodd, M.S. & Ferrante, A. 2014 A fast pressure-correction method for incompressible two-fluid flows. J. Comput. Phys. 273, 416434.10.1016/j.jcp.2014.05.024CrossRefGoogle Scholar
Dodd, M.S. & Ferrante, A. 2016 On the interaction of Taylor length scale size droplets and isotropic turbulence. J. Fluid Mech. 806, 356412.10.1017/jfm.2016.550CrossRefGoogle Scholar
Dopazo, C., Lozano, A. & Barreras, F. 2000 Vorticity constraints on a fluid/fluid interface. Phys. Fluids 12, 19281931.10.1063/1.870441CrossRefGoogle Scholar
Draheim, L. & Kornev, N. 2024 Influence of the free surface on turbulent kinetic energy in the wake of a full ship. Ocean Eng. 313, 119459.10.1016/j.oceaneng.2024.119459CrossRefGoogle Scholar
Farsoiya, P.K., Magdelaine, Q., Antkowiak, A., Popinet, S. & Deike, L. 2023 Direct numerical simulations of bubble-mediated gas transfer and dissolution in quiescent and turbulent flows. J. Fluid Mech. 954, A29.10.1017/jfm.2022.994CrossRefGoogle Scholar
Fedkiw, R.P., Aslam, T., Merriman, B. & Osher, S. 1999 A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152, 457492.10.1006/jcph.1999.6236CrossRefGoogle Scholar
Flack, J.E., Kveisengen, J.I. & Nath, J.H. 1961 Air entrainment in turbulent liquids. Science 134, 392393.10.1126/science.134.3476.392CrossRefGoogle ScholarPubMed
Flores, O., Riley, J.J. & Horner-Devine, A.R. 2017 On the dynamics of turbulence near a free surface. J. Fluid Mech. 821, 248265.10.1017/jfm.2017.209CrossRefGoogle Scholar
Frederix, E.M.A., Mathur, A., Dovizio, D., Geurts, B.J. & Komen, E.M.J. 2018 Reynolds-averaged modeling of turbulence damping near a large-scale interface in two-phase flow. Nucl. Eng. Des. 333, 122130.10.1016/j.nucengdes.2018.04.010CrossRefGoogle Scholar
Freund, A. & Ferrante, A. 2019 Wavelet-spectral analysis of droplet-laden isotropic turbulence. J. Fluid Mech. 875, 914928.10.1017/jfm.2019.515CrossRefGoogle Scholar
Garrett, C., Li, M. & Farmer, D. 2000 The connection between bubble size spectra and energy dissipation rates in the upper ocean. J. Phys. Oceanogr. 30, 21632171.10.1175/1520-0485(2000)030<2163:TCBBSS>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Gaylo, D.B., Hendrickson, K. & Yue, D.K.P. 2024 Effect of degassing on bubble populations in air-entraining free-surface turbulent flows. J. Fluid Mech. 995, 12.10.1017/jfm.2024.780CrossRefGoogle Scholar
Guo, X. & Shen, L. 2009 On the generation and maintenance of waves and turbulence in simulations of free-surface turbulence. J. Comput. Phys. 228, 73137332.10.1016/j.jcp.2009.06.030CrossRefGoogle Scholar
Guo, X. & Shen, L. 2010 Interaction of a deformable free surface with statistically steady homogeneous turbulence. J. Fluid Mech. 658, 3362.10.1017/S0022112010001539CrossRefGoogle Scholar
Herlina, H. & Wissink, J.G. 2019 Simulation of air-water interfacial mass transfer driven by high-intensity isotropic turbulence. J. Fluid Mech. 860, 419440.10.1017/jfm.2018.884CrossRefGoogle Scholar
Hunt, J.C.R. & Graham, J.M.R. 1978 Free-stream turbulence near plane boundaries. J. Fluid Mech. 84, 209235.10.1017/S0022112078000130CrossRefGoogle Scholar
Hunt, J.C.R. 1984 Turbulence Structure and Turbulent Diffusion Near Gas–Liquid Interfaces, pp. 6782. Springer Netherlands.Google Scholar
Jamin, T., Berhanu, M. & Falcon, E. 2025 Experimental study of three-dimensional turbulence under a free surface. Phys. Rev. Fluids 10, 034608.10.1103/PhysRevFluids.10.034608CrossRefGoogle Scholar
Jiang, G.-S. & Peng, D. 2000 Weighted ENO schemes for Hamilton-Jacobi equations. Soc. Indust. Appl. Math. 21, 21262143.Google Scholar
Johnson, P.L. 2021 On the role of vorticity stretching and strain self-amplification in the turbulence energy cascade. J. Fluid Mech. 922, A3.10.1017/jfm.2021.490CrossRefGoogle Scholar
Kraichnan, R.H. 1971 Inertial-range transfer in two-and three-dimensional turbulence. J. Fluid Mech. 47, 525535.10.1017/S0022112071001216CrossRefGoogle Scholar
Kraus, E.B. & Businger, J.A. 1994 Atmosphere-Ocean Interaction. Oxford University Press, Inc.Google Scholar
Kumar, S. & Banerjee, S. 1998 Development and application of a hierarchical system for digital particle image velocimetry to free-surface turbulence. Phys. Fluids 10, 160177.10.1063/1.869558CrossRefGoogle Scholar
Lance, M. & Bataille, J. 1991 Turbulence in the liquid phase of a uniform bubbly air-water flow. J. Fluid Mech. 222, 95118.10.1017/S0022112091001015CrossRefGoogle Scholar
Lee, G.R., Gommers, R., Waselewski, F., Wohlfahrt, K. & O’Leary, A. 2019 PyWavelets: a python package for wavelet analysis. J. Open Source Software 4 (36), 1237.10.21105/joss.01237CrossRefGoogle Scholar
Lien, S.-L. & Kajiya, J.T. 1984 A symbolic method for calculating the integral properties of arbitrary nonconvex polyhedra; a symbolic method for calculating the integral properties of arbitrary nonconvex polyhedra. IEEE Comput. Graph. 4, 3542.10.1109/MCG.1984.6429334CrossRefGoogle Scholar
Longuet-Higgins, M.S. 1996 Surface manifestations of turbulent flow. J. Fluid Mech. 308, 1529.10.1017/S0022112096001371CrossRefGoogle Scholar
Lovecchio, S., Zonta, F. & Soldati, A. 2015 Upscale energy transfer and flow topology in free-surface turbulence. Phys. Rev. E 91 (3), 033010.10.1103/PhysRevE.91.033010CrossRefGoogle ScholarPubMed
Lundgren, T.S. 2003 Linearly forced isotropic turbulence. In Annual Research Briefs, Center for Turbulence Research, pp. 461473.Google Scholar
Masnadi, N., Erinin, M.A., Washuta, N., Nasiri, F., Balaras, E. & Duncan, J.H. 2020 Air entrainment and surface fluctuations in a turbulent ship hull boundary layer. J. Ship Res. 64, 185201.10.5957/jsr.2020.64.2.185CrossRefGoogle Scholar
McKenna, S.P. & McGillis, W.R. 2004 The role of free-surface turbulence and surfactants in air-water gas transfer. Intl J. Heat Mass Tran. 47, 539553.10.1016/j.ijheatmasstransfer.2003.06.001CrossRefGoogle Scholar
Meneveau, C. 1991 Analysis of turbulence in the orthonormal wavelet representation. J. Fluid Mech. 232, 469520.10.1017/S0022112091003786CrossRefGoogle Scholar
Mukherjee, S., Safdari, A., Shardt, O., Kenjereš, S. & Akker, H.E.A.V.D. 2019 Droplet-turbulence interactions and quasi-equilibrium dynamics in turbulent emulsions. J. Fluid Mech. 878, 221276.10.1017/jfm.2019.654CrossRefGoogle Scholar
Ni, R. 2024 Deformation and breakup of bubbles and drops in turbulence. Ann. Rev. Fluid Mech. 56, 319347.10.1146/annurev-fluid-121021-034541CrossRefGoogle Scholar
Pan, Y. & Banerjee, S. 1995 A numerical study of free-surface turbulence in channel flow. Phys. Fluids 7, 16491664.10.1063/1.868483CrossRefGoogle Scholar
Park, D. & Lozano-Duran, A. 2025 The coherent structure of the energy cascade in isotropic turbulence. Sci. Rep. 15, 14.10.1038/s41598-024-80698-3CrossRefGoogle ScholarPubMed
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Popinet, S. 2018 Numerical models of surface tension. Annu. Rev. Fluid Mech. 50 (2018), 4975.10.1146/annurev-fluid-122316-045034CrossRefGoogle Scholar
Prakash, V.N., Mercado, J.M., Wijngaarden, L.V., Mancilla, E., Tagawa, Y., Lohse, D. & SunC. 2016 Energy spectra in turbulent bubbly flows. J. Fluid Mech. 791, 174190.10.1017/jfm.2016.49CrossRefGoogle Scholar
Qi, Y., Li, Y. & Coletti, F. 2025 Small-scale dynamics and structure of free-surface turbulence. J. Fluid Mech. 1007, A3.10.1017/jfm.2025.139CrossRefGoogle Scholar
Roghair, I., Mercado, J.M., Annaland, M.V.S., Kuipers, H., Sun, C. & Lohse, D. 2011 Energy spectra and bubble velocity distributions in pseudo-turbulence: numerical simulations vs. experiments. Intl J. Multiphas. Flow 37, 10931098.10.1016/j.ijmultiphaseflow.2011.07.004CrossRefGoogle Scholar
Rosales, C. & Meneveau, C. 2005 Linear forcing in numerical simulations of isotropic turbulence: physical space implementations and convergence properties. Phys. Fluids 17, 18.10.1063/1.2047568CrossRefGoogle Scholar
Ruth, D.J. & Coletti, F. 2024 Structure and energy transfer in homogeneous turbulence below a free surface. J. Fluid Mech. 1001, A46.10.1017/jfm.2024.1017CrossRefGoogle Scholar
Saeedipour, M. 2023 An enstrophy-based analysis of the turbulence–interface interactions across the scales. Intl J. Multiphas. Flow 164, 104449.10.1016/j.ijmultiphaseflow.2023.104449CrossRefGoogle Scholar
Saeedipour, M. & Schneiderbauer, S. 2022 Toward a universal description of multiphase turbulence phenomena based on the vorticity transport equation. Phys. Fluids 34 (7), 073317.10.1063/5.0098824CrossRefGoogle Scholar
Salvetti, M.V., Zang, Y., Street, R.L. & Banerjee, S. 1997 Large-eddy simulation of free-surface decaying turbulence with dynamic subgrid-scale models. Phys. Fluids 9 (8), 24052419.10.1063/1.869359CrossRefGoogle Scholar
Sarpkaya, T. 1996 Vorticity, free surface, and surfactants. Annu. Rev. Fluid. Mech. 28, 83128.10.1146/annurev.fl.28.010196.000503CrossRefGoogle Scholar
Savelsberg, R. & van de Water, W. 2008 Turbulence of a free surface. Phys. Rev. Lett. 100 (3), 034501.10.1103/PhysRevLett.100.034501CrossRefGoogle ScholarPubMed
Shen, L., Zhang, X., Yue, D.K.P. & Triantafyllou, G.S. 1999 The surface layer for free-surface turbulent flows. J. Fluid Mech. 386, 167212.10.1017/S0022112099004590CrossRefGoogle Scholar
Shu, C.-W. & Osher, S. 1988 Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439471.10.1016/0021-9991(88)90177-5CrossRefGoogle Scholar
Terrington, S.J., Hourigan, K. & Thompson, M.C. 2022 a Vortex ring connection to a free surface. J. Fluid Mech. 944, 56.10.1017/jfm.2022.529CrossRefGoogle Scholar
Terrington, S.J., Hourigan, K. & Thompson, M.C. 2022 b Vorticity generation and conservation on generalised interfaces in three-dimensional flows. J. Fluid Mech. 936, 44.10.1017/jfm.2022.91CrossRefGoogle Scholar
Variano, E.A. & Cowen, E.A. 2008 A random-jet-stirred turbulence tank. J. Fluid Mech. 604, 132.10.1017/S0022112008000645CrossRefGoogle Scholar
Vela-Martín, A. & Avila, M. 2021 Deformation of drops by outer eddies in turbulence. J. Fluid Mech. 929, 38.10.1017/jfm.2021.879CrossRefGoogle Scholar
Walker, D.T., Leighton, R.I. & Garza-Rios, L.O. 1996 Shear-free turbulence near a flat free surface. J. Fluid Mech. 320, 1951.10.1017/S0022112096007446CrossRefGoogle Scholar
Xiao, Z., Wan, M., Chen, S. & Eyink, G.L. 2009 Physical mechanism of the inverse energy cascade of two-dimensional turbulence: a numerical investigation. J. Fluid Mech. 619, 144.10.1017/S0022112008004266CrossRefGoogle Scholar
Yu, X., Hendrickson, K., Campbell, B.K. & Yue, D.K.P. 2019 Numerical investigation of shear-flow free-surface turbulence and air entrainment at large Froude and Weber numbers. J. Fluid Mech. 880, 209238.10.1017/jfm.2019.695CrossRefGoogle Scholar
Yuan, B., Li, J., Carrica, P.M., Hendrickson, K. & Yue, D. 2024 Vent: an air entrainment model for turbulent free surface flows. Phys. Fluids 36 (1), 013334.10.1063/5.0180555CrossRefGoogle Scholar
Zhang, H., Zheng, L.L. & Hou, T.Y. 1998 A curvilinear level set formulation for highly deformable free surface problems with application to solidification. Num. Heat Transfer Part B: Fundam. 34, 130.10.1080/10407799808915045CrossRefGoogle Scholar