Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T12:09:13.426Z Has data issue: false hasContentIssue false

Interface-resolved direct numerical simulations of the interactions between spheroidal particles and upward vertical turbulent channel flows

Published online by Cambridge University Press:  18 March 2020

Chenlin Zhu
Affiliation:
State Key Laboratory of Fluid Power and Mechatronic System, Department of Mechanics, Zhejiang University, Hangzhou310027, PR China China Jiliang University, Hangzhou310018, PR China
Zhaosheng Yu*
Affiliation:
State Key Laboratory of Fluid Power and Mechatronic System, Department of Mechanics, Zhejiang University, Hangzhou310027, PR China
Dingyi Pan
Affiliation:
State Key Laboratory of Fluid Power and Mechatronic System, Department of Mechanics, Zhejiang University, Hangzhou310027, PR China
Xueming Shao
Affiliation:
State Key Laboratory of Fluid Power and Mechatronic System, Department of Mechanics, Zhejiang University, Hangzhou310027, PR China
*
Email address for correspondence: yuzhaosheng@zju.edu.cn

Abstract

The interactions between finite-size spheroidal particles and upward turbulent flows in a vertical channel are numerically simulated with a direct-forcing fictitious domain method at two particle settling coefficients $u_{s}$ (the ratio of the particle Stokes free-fall velocity to the bulk velocity) of 0.1 and 0.3, a bulk Reynolds number of 2873, a ratio of the particle equivalent diameter to the channel width of 0.05, a particle volume fraction of 2.36 % and particle aspect ratios of $1/3$, 1 and 2. Our results show that the flow friction is largest for the case of a sphere, and smallest for the oblate case when the particle sedimentation effect is weak ($u_{s}=0.1$), whereas the flow friction is smallest for the case of a sphere, and largest for the oblate case when the particle sedimentation effect is moderately strong ($u_{s}=0.3$). The reason for the lower flow friction of the spherical particles is that the large-scale vortices are more strongly attenuated by the spherical particles than by the non-spherical particles in the case of $u_{s}=0.3$. The settling particles tend to migrate towards the channel centre due to the Saffman effect, and the migration is strongest for the spherical particles. The non-spherical particles tend to align their long axes with the streamwise direction in the near-wall region, and perpendicular to the streamwise direction in the bulk region due to the significant settling effect.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alajbegović, A., Assad, A., Bonetto, F. & Lahey, R. T. Jr 1994 Phase distribution and turbulence structure for solid/fluid upflow in a pipe. Intl J. Multiphase Flow 20 (3), 453479.CrossRefGoogle Scholar
Ardekani, M. N. & Brandt, L. 2019 Turbulence modulation in channel flow of finite-size spheroidal particles. J. Fluid Mech. 859, 887901.CrossRefGoogle Scholar
Ardekani, M. N., Costa, P., Breugem, W.-P., Picano, F. & Brandt, L. 2017 Drag reduction in turbulent channel flow laden with finite-size oblate spheroids. J. Fluid Mech. 816, 4370.CrossRefGoogle Scholar
Borée, J. & Caraman, N. 2005 Dilute bidispersed tube flow: role of interclass collisions at increased loadings. Phys. Fluids 17 (5), 055108.CrossRefGoogle Scholar
Challabotla, N. R., Zhao, L. & Andersson, H. I. 2015a Orientation and rotation of inertial disk particles in wall turbulence. J. Fluid Mech. 766, R2.CrossRefGoogle Scholar
Challabotla, N. R., Zhao, L. & Andersson, H. I. 2015b Shape effects on dynamics of inertia-free spheroids in wall turbulence. Phys. Fluids 27, 061703.CrossRefGoogle Scholar
Challabotla, N. R., Zhao, L. & Andersson, H. I. 2016a Gravity effects on fiber dynamics in wall turbulence. Flow Turbul. Combust. 97 (4), 10951110.CrossRefGoogle Scholar
Challabotla, N. R., Zhao, L. & Andersson, H. I. 2016b On fiber behavior in turbulent vertical channel flow. Chem. Engng Sci. 153, 7586.CrossRefGoogle Scholar
Chang, E. J. & Maxey, M. R. 1994 Unsteady flow about a sphere at low to moderate Reynolds number. Part 1. Oscillatory motion. J. Fluid Mech. 277, 347379.CrossRefGoogle Scholar
Cisse, M., Homann, H. & Bec, J. 2013 Slipping motion of large neutrally buoyant particles in turbulence. J. Fluid Mech. 735, R1.CrossRefGoogle Scholar
Costa, P., Picano, F., Brandt, L. & Breugem, W.-P. 2018 Effects of the finite particle size in turbulent wall-bounded flows of dense suspensions. J. Fluid Mech. 843, 450478.CrossRefGoogle Scholar
Do-Quang, M., Amberg, G., Brethouwer, G. & Johansson, A. V. 2014 Simulation of finite-size fibers in turbulent channel flows. Phys. Rev. E 89 (1), 013006.Google ScholarPubMed
Doroodchi, E., Evans, G. M., Schwarz, M. P., Lane, G. L., Shah, N. & Nguyen, A. 2008 Influence of turbulence intensity on particle drag coefficients. Chem. Engng J. 135 (1–2), 129134.CrossRefGoogle Scholar
Eshghinejadfard, A., Hosseini, S. A. & Thévenin, D. 2017 Fully-resolved prolate spheroids in turbulent channel flows: a lattice Boltzmann study. AIP Adv. 7 (9), 095007.CrossRefGoogle Scholar
Eshghinejadfard, A., Zhao, L. & Thévenin, D. 2018 Lattice Boltzmann simulation of resolved oblate spheroids in wall turbulence. J. Fluid Mech. 849, 510540.CrossRefGoogle Scholar
Fessler, J. R., Kulick, J. D. & Eaton, J. K. 1994 Preferential concentration of heavy particles in a turbulent channel flow. Phys. Fluids 6 (11), 37423749.CrossRefGoogle Scholar
Fong, K. O., Amili, O. & Coletti, F. 2019 Velocity and spatial distribution of inertial particles in a turbulent channel flow. J. Fluid Mech. 872, 367406.CrossRefGoogle Scholar
Fornari, W., Formenti, A., Picano, F. & Brandt, L. 2016a The effect of particle density in turbulent channel flow laden with finite size particles in semi-dilute conditions. Phys. Fluids 28 (3), 033301.CrossRefGoogle Scholar
Fornari, W., Kazerooni, H. T., Hussong, J. & Brandt, L. 2018 Suspensions of finite-size neutrally buoyant spheres in turbulent duct flow. J. Fluid Mech. 851, 148186.CrossRefGoogle Scholar
Fornari, W., Picano, F., Sardina, G. & Brandt, L. 2016b Reduced particle settling speed in turbulence. J. Fluid Mech. 808, 153167.CrossRefGoogle Scholar
Fukagata, K., Iwamoto, K. & Kasagi, N. 2002 Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14 (11), L73L76.CrossRefGoogle Scholar
Gao, H., Li, H. & Wang, L.-P. 2013 Lattice Boltzmann simulation of turbulent flow laden with finite-size particles. Comput. Maths Applics. 65 (2), 194210.CrossRefGoogle Scholar
Garcia-Villalba, M., Kidanemariam, A. G. & Uhlmann, M. 2012 DNS of vertical plane channel flow with finite-size particles: Voronoï analysis, acceleration statistics and particle-conditioned averaging. Intl J. Multiphase Flow 46, 5474.CrossRefGoogle Scholar
Glowinski, R., Pan, T.-W., Hesla, T. I. & Joseph, D. D. 1999 A distributed lagrange multiplier/fictitious domain method for particulate flows. Intl J. Multiphase Flow 25 (5), 755794.CrossRefGoogle Scholar
Hadinoto, K., Jones, E. N., Yurteri, C. & Curtis, J. S. 2005 Reynolds number dependence of gas-phase turbulence in gas–particle flows. Intl J. Multiphase Flow 31 (4), 416434.CrossRefGoogle Scholar
Hosokawa, S. & Tomiyama, A. 2004 Turbulence modification in gas–liquid and solid–liquid dispersed two-phase pipe flows. Intl J. Heat Fluid Flow 25 (3), 489498.CrossRefGoogle Scholar
Huang, H., Yang, X., Krafczyk, M. & Lu, X. 2012 Rotation of spheroidal particles in Couette flows. J. Fluid Mech. 692, 369394.CrossRefGoogle Scholar
Huang, P. Y., Feng, J. & Joseph, D. D. 1994 The turning couples on an elliptic particle settling in a vertical channel. J. Fluid Mech. 271, 116.CrossRefGoogle Scholar
Hunt, J. C. R., Wray, A. A. & Moin, P.1988 Eddies, streams, and convergence zones in turbulent flows. CTR Report CTR-S88, pp. 193–208. Center for Turbulence Research.Google Scholar
Kajishima, T., Takiguchi, S., Hamasaki, H. & Miyake, Y. 2001 Turbulence structure of particle-laden flow in a vertical plane channel due to vortex shedding. JSME Intl J. Ser. B 44 (4), 526535.CrossRefGoogle Scholar
Kameyama, K., Kanai, H., Kawashima, H. & Ishima, T. 2014 Evaluation of particle motion in solid–liquid two-phase pipe flow with downward/upward flow directions. In Proceedings of the 17th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal. Lisbon Symposia.Google Scholar
Kulick, J. D., Fessler, J. R. & Eaton, J. K. 1994 Particle response and turbulence modification in fully developed channel flow. J. Fluid Mech. 277, 109134.CrossRefGoogle Scholar
Lee, S. L. & Durst, F. 1982 On the motion of particles in turbulent duct flows. Intl J. Multiphase Flow 8 (2), 125146.CrossRefGoogle Scholar
Lin, A. & Han, S.-P. 2002 On the distance between two ellipsoids. SIAM J. Optim. 13, 298308.CrossRefGoogle Scholar
Lin, Z., Yu, Z., Shao, X. & Wang, L.-P. 2017a Effects of finite-size neutrally buoyant particles on the turbulent flows in a square duct. Phys. Fluids 29 (10), 103304.CrossRefGoogle Scholar
Lin, Z.-W., Shao, X.-M., Yu, Z.-S. & Wang, L.-P. 2017b Effects of finite-size heavy particles on the turbulent flows in a square duct. J. Hydrodyn. 29 (2), 272282.CrossRefGoogle Scholar
Lucci, F., Ferrante, A. & Elghobashi, S. 2010 Modulation of isotropic turbulence by particles of Taylor length-scale size. J. Fluid Mech. 650, 555.CrossRefGoogle Scholar
Marchioli, C., Fantoni, M. & Soldati, A. 2010 Orientation, distribution, and deposition of elongated, inertial fibers in turbulent channel flow. Phys. Fluids 22, 033301.CrossRefGoogle Scholar
Marchioli, C., Picciotto, M. & Soldati, A. 2007 Influence of gravity and lift on particle velocity statistics and transfer rates in turbulent vertical channel flow. Intl J. Multiphase Flow 33 (3), 227251.CrossRefGoogle Scholar
Marchioli, C. & Soldati, A. 2013 Rotation statistics of fibers in wall shear turbulence. Acta Mechanica 224, 23112329.CrossRefGoogle Scholar
Marchioli, C., Zhao, L. & Andersson, H. I. 2016 On the relative rotational motion between rigid fibers and fluid in turbulent channel flow. Phys. Fluids 28, 013301.CrossRefGoogle Scholar
Milici, B. 2018 Modification of particle laden near-wall turbulence in a vertical channel bounded by rough walls. Intl J. Multiphase Flow 103, 151168.CrossRefGoogle Scholar
Mortensen, P. H., Andersson, H. I., Gillissen, J. J. J. & Boersma, B. J. 2008a Dynamics of prolate ellipsoidal particles in a turbulent channel flow. Phys. Fluids 20, 093302.CrossRefGoogle Scholar
Mortensen, P. H., Andersson, H. I., Gillissen, J. J. J. & Boersma, B. J. 2008b On the orientation of ellipsoidal particles in a turbulent shear flow. Intl J. Multiphase Flow 34, 678683.CrossRefGoogle Scholar
Ni, R., Kramel, S., Ouellette, N. T. & Voth, G. A. 2015 Measurements of the coupling between the tumbling of rods and the velocity gradient tensor in turbulence. J. Fluid Mech. 766, 202225.CrossRefGoogle Scholar
Ni, R., Ouellette, N. T. & Voth, G. A. 2014 Alignment of vorticity and rods with Lagrangian fluid stretching in turbulence. J. Fluid Mech. 743, R3.CrossRefGoogle Scholar
Nilsen, C., Andersson, H. I. & Zhao, L. 2013 A Voronoï analysis of preferential concentration in a vertical channel flow. Phys. Fluids 25 (11), 115108.CrossRefGoogle Scholar
Peng, C., Ayala, O. M. & Wang, L.-P. 2019 A direct numerical investigation of two-way interactions in a particle-laden turbulent channel flow. J. Fluid Mech. 875, 10961144.CrossRefGoogle Scholar
Peng, C. & Wang, L.-P. 2019 Direct numerical simulations of turbulent pipe flow laden with finite-size neutrally buoyant particles at low flow Reynolds number. Acta Mechanica 230 (2), 517539.CrossRefGoogle Scholar
Picano, F., Breugem, W.-P. & Brandt, L. 2015 Turbulent channel flow of dense suspensions of neutrally buoyant spheres. J. Fluid Mech. 764, 463487.CrossRefGoogle Scholar
Russel, W. B., Hinch, E. J., Leal, L. G. & Tieffenbruck, G. 1977 Rods falling near a vertical wall. J. Fluid Mech. 83 (2), 273287.CrossRefGoogle Scholar
Santarelli, C. & Fröhlich, J. 2015 Direct numerical simulations of spherical bubbles in vertical turbulent channel flow. Intl J. Multiphase Flow 75, 174193.CrossRefGoogle Scholar
Shao, X., Wu, T. & Yu, Z. 2012 Fully resolved numerical simulation of particle-laden turbulent flow in a horizontal channel at a low Reynolds number. J. Fluid Mech. 693, 319344.CrossRefGoogle Scholar
Shokri, R., Ghaemi, S., Nobes, D. S. & Sanders, R. S. 2017 Investigation of particle-laden turbulent pipe flow at high-Reynolds-number using particle image/tracking velocimetry (PIV/PTV). Intl J. Multiphase Flow 89, 136149.CrossRefGoogle Scholar
Tsuji, Y., Morikawa, Y. & Shiomi, H. 1984 LDV measurements of an air–solid two-phase flow in a vertical pipe. J. Fluid Mech. 139, 417434.CrossRefGoogle Scholar
Uhlmann, M. 2008 Interface-resolved direct numerical simulation of vertical particulate channel flow in the turbulent regime. Phys. Fluids 20 (5), 053305.CrossRefGoogle Scholar
Vreman, A. W. 2015 Turbulence attenuation in particle-laden flow in smooth and rough channels. J. Fluid Mech. 773, 103136.CrossRefGoogle Scholar
Wang, B. 2010a Inter-phase interaction in a turbulent, vertical channel flow laden with heavy particles. Part I: Numerical methods and particle dispersion properties. Intl J. Heat Mass Transfer 53 (11–12), 25062521.CrossRefGoogle Scholar
Wang, B. 2010b Inter-phase interaction in a turbulent, vertical channel flow laden with heavy particles. Part II: Two-phase velocity statistical properties. Intl J. Heat Mass Transfer 53 (11–12), 25222529.CrossRefGoogle Scholar
Wang, G., Abbas, M. & Climent, É. 2017 Modulation of large-scale structures by neutrally buoyant and inertial finite-size particles in turbulent Couette flow. Phys. Rev. Fluids 2 (8), 084302.CrossRefGoogle Scholar
Wang, G., Fong, K. O., Coletti, F., Capecelatro, J. & Richter, D. H. 2019 Inertial particle velocity and distribution in vertical turbulent channel flow: a numerical and experimental comparison. Intl J. Multiphase Flow 120, 103105.CrossRefGoogle Scholar
Wang, L.-P., Peng, C., Guo, Z. & Yu, Z. 2016 Flow modulation by finite-size neutrally buoyant particles in a turbulent channel flow. J. Fluids Engng 138 (4), 041306.Google Scholar
Wu, T.-H., Shao, X.-M. & Yu, Z.-S. 2011 Fully resolved numerical simulation of turbulent pipe flows laden with large neutrally-buoyant particles. J. Hydrodyn. 23 (1), 2125.CrossRefGoogle Scholar
Xia, Z., Connington, K. W., Rapaka, S., Yue, P., Feng, J. J. & Chen, S. 2009 Flow patterns in the sedimentation of an elliptical particle. J. Fluid Mech. 625, 249272.CrossRefGoogle Scholar
Yamamoto, Y., Potthoff, M., Tanaka, T., Kajishima, T. & Tsuji, Y. 2001 Large-eddy simulation of turbulent gas–particle flow in a vertical channel: effect of considering inter-particle collisions. J. Fluid Mech. 442, 303334.CrossRefGoogle Scholar
Yu, W., Vinkovic, I. & Buffat, M. 2016a Finite-size particles in turbulent channel flow: quadrant analysis and acceleration statistics. J. Turbul. 17 (11), 10481071.CrossRefGoogle Scholar
Yu, Z., Lin, Z., Shao, X. & Wang, L.-P. 2016b A parallel fictitious domain method for the interface-resolved simulation of particle-laden flows and its application to the turbulent channel flow. Engng Appl. Comput. Fluid Mech. 10, 160170.Google Scholar
Yu, Z., Lin, Z., Shao, X. & Wang, L.-P. 2017 Effects of particle-fluid density ratio on the interactions between the turbulent channel flow and finite-size particles. Phys. Rev. E 96 (3), 033102.Google ScholarPubMed
Yu, Z., Phan-Thien, N. & Tanner, R. I. 2004 Dynamic simulation of sphere motion in a vertical tube. J. Fluid Mech. 518, 6193.CrossRefGoogle Scholar
Yu, Z., Phan-Thien, N. & Tanner, R. I. 2007 Rotation of a spheroid in a Couette flow at moderate Reynolds numbers. Phys. Rev. E 76, 026310.Google Scholar
Yu, Z. & Shao, X. 2007 A direct-forcing fictitious domain method for particulate flows. J. Comput. Phys. 227, 292314.CrossRefGoogle Scholar
Yuan, W., Andersson, H. I., Zhao, L., Challabotla, N. R. & Deng, J. 2017 Dynamics of disk-like particles in turbulent vertical channel flow. Intl J. Multiphase Flow 96, 86100.CrossRefGoogle Scholar
Yuan, W., Zhao, L., Challabotla, N. R., Andersson, H. I. & Deng, J. 2018 On wall-normal motions of inertial spheroids in vertical turbulent channel flows. Acta Mechanioca 229 (7), 29472965.CrossRefGoogle Scholar
Zhang, H., Ahmadi, G., Fan, F.-G. & McLaughlin, J. B. 2001 Ellipsoidal particles transport and deposition in turbulent channel flows. Intl J. Multiphase Flow 27 (6), 9711009.CrossRefGoogle Scholar
Zhao, F., George, W. K. & van Wachem, B. G. M. 2015a Four-way coupled simulations of small particles in turbulent channel flow: the effects of particle shape and Stokes number. Phys. Fluids 27, 083301.CrossRefGoogle Scholar
Zhao, L. & Andersson, H. I. 2016 Why spheroids orient preferentially in near-wall turbulence. J. Fluid Mech. 807, 221234.CrossRefGoogle Scholar
Zhao, L., Challabotla, N. R., Andersson, H. I. & Variano, E. A. 2015b Rotation of nonspherical particles in turbulent channel flow. Phys. Rev. Lett. 115, 244501.CrossRefGoogle Scholar
Zhu, C., Yu, Z. & Shao, X. 2018 Interface-resolved direct numerical simulations of the interactions between neutrally buoyant spheroidal particles and turbulent channel flows. Phys. Fluids 30 (11), 115103.CrossRefGoogle Scholar
Zhu, C., Yu, Z., Shao, X. & Deng, J. 2020 Interface-resolved numerical simulations of particle-laden turbulent flows in a vertical channel filled with Bingham fluids. J. Fluid Mech. 883, A43.CrossRefGoogle Scholar