No CrossRef data available.
Published online by Cambridge University Press: 27 March 2025
This work reports high-fidelity shock-tube experiments on the convergent Richtmyer–Meshkov (RM) instability at a heavy gas layer. The convergent shock tube is designed based on shock dynamics theory, significantly mitigating interface deceleration and reflected shock. As a result, long-term observation of instability growth up to nonlinear stage, free of interface deceleration and reshock, is achieved. Various types of SF$_6$ layers surrounded by air with controllable thicknesses and shapes, created using a soap film technique, are examined. For thick layers, the evolutions of the outer and inner interfaces are nearly decoupled regardless of the layer shape. The weakly nonlinear model of Wang (Phys. Plasmas,vol. 22, 2015, p. 082702), designed for cylindrical RM instability at a single interface, provides a reasonable prediction of perturbation growth at the inner interface, while slightly underestimating instability growth at the outer interface, as it neglects the effects of rarefaction wave. For thin layers, perturbation growth is fastest at either interface when both interfaces initially possess in-phase perturbations, moderate when only one interface is initially perturbed and slowest when the two interfaces have anti-phase perturbations. This variation in growth rates is due to the fact that the evolution of a thin layer is influenced by both reverberating waves and interface coupling, with each factor being highly sensitive to the layer shape. The original vortex method is extended to address the convergent RM instability by incorporating the influences of unsteady background flow, interface coupling and reverberating waves into the transport of a vortex sheet. This extended vortex method enables accurate prediction of convergent RM instability at a gas layer, covering the full range from early linear to late nonlinear stages.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.