Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T02:39:05.579Z Has data issue: false hasContentIssue false

Gel-controlled droplet spreading

Published online by Cambridge University Press:  19 December 2017

M. Jalaal*
Affiliation:
Department of Mechanical Engineering, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada
C. Seyfert
Affiliation:
Institute of Fluid Mechanics, Technical University of Dresden, 01069 Dresden, Germany
B. Stoeber
Affiliation:
Department of Mechanical Engineering, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada
N. J. Balmforth
Affiliation:
Department of Mathematics, University of British Columbia, Vancouver, V6T 1Z2, BC, Canada
*
Email address for correspondence: mazi@alumni.ubc.ca

Abstract

Spreading and stationary droplets of a thermally responsive fluid on a heated surface are studied. The fluid undergoes a reversible gel formation at elevated temperature. The spatio-temporal pattern of gel formation within the droplet is examined using an experimental method based on spectral domain optical coherence tomography and time varying speckle patterns. Two stages of gel formation can be distinguished: first, a thin crust appears starting at the contact line. Second, a gel layer appears above the heated plate and then expands upward. We attribute the first stage of gel formation to solvent evaporation and heating through the air and the second to thermal conduction through the fluid from the base. Gel formation at the contact line is likely responsible for the arrest of spreading droplets, but was not detectable with our experimental protocol at the time of contact line arrest, suggesting that this arose over a microscopic length scale. Overall, substrate heating provides an effective way to control the final shape of droplets of thermo-responsive fluids.

Type
JFM Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ait Saada, M., Chikh, S. & Tadrist, L. 2010 Numerical investigation of heat and mass transfer of an evaporating sessile drop on a horizontal surface. Phys. Fluids 22 (11), 112115.Google Scholar
Arai, S. & Doi, M. 2012 Skin formation and bubble growth during drying process of polymer solution. Eur. Phys. J. E 35 (7), 19.Google Scholar
Ashmore, J., Shen, A. Q., Kavehpour, H. P., Stone, H. A. & McKinley, G. H. 2008 Coating flows of non-Newtonian fluids: weakly and strongly elastic limits. J. Engng Maths 60 (1), 1741.10.1007/s10665-007-9152-8Google Scholar
Basaran, O. A., Gao, H. & Bhat, P. P. 2013 Nonstandard inkjets. Annu. Rev. Fluid Mech. 45, 85113.10.1146/annurev-fluid-120710-101148Google Scholar
Bergeron, V., Bonn, D., Martin, J. Y. & Vovelle, L. 2000 Controlling droplet deposition with polymer additives. Nature 405, 772775.Google Scholar
Bhola, R. & Chandra, S. 1999 Parameters controlling solidification of molten wax droplets falling on a solid surface. J. Mater. Sci. 34 (19), 48834894.Google Scholar
Bodiguel, H. & Leng, J. 2010 Imaging the drying of a colloidal suspension. Soft Matt. 6 (21), 54515460.Google Scholar
Buchsbaum, A., Egger, M., Burzic, I., Koepplmayr, T., Aigner, M., Miethlinger, J. & Leitner, M. 2015 Optical coherence tomography based particle image velocimetry (oct-piv) of polymer flows. Opt. Laser Engng 69, 4048.10.1016/j.optlaseng.2015.02.003Google Scholar
Cerbino, R. & Trappe, V. 2008 Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Phys. Rev. Lett. 100 (18), 188102.10.1103/PhysRevLett.100.188102Google Scholar
Conroy, L., DaCosta, R. S. & Vitkin, I. A. 2012 Quantifying tissue microvasculature with speckle variance optical coherence tomography. Opt. Lett. 37 (15), 31803182.Google Scholar
Cooper-White, J. J., Crooks, R. C. & Boger, D. V. 2002 A drop impact study of worm-like viscoelastic surfactant solutions. Colloids Surf. A 210, 105123.Google Scholar
Crocker, J. C. & Grier, D. G. 1996 Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179 (1), 298310.Google Scholar
Drexler, W. & Fujimoto, J. G. 2008 Optical Coherence Tomography: Technology and Applications. Springer Science & Business Media.Google Scholar
Dunn, G. J., Wilson, S. K., Duffy, B. R., David, S. & Sefiane, K. 2009 The strong influence of substrate conductivity on droplet evaporation. J. Fluid Mech. 623, 329351.Google Scholar
Jalaal, M., Cottrell, G., Balmforth, N. J. & Stoeber, B. 2017 On the rheology of pluronic f127 aqueous solutions. J. Rheol. 61 (1), 139146.Google Scholar
Jalaal, M. & Stoeber, B. 2014 Controlled spreading of thermo-responsive droplets. Soft Matt. 10, 808812.Google Scholar
Josserand, C. & Thoroddson, S. T. 2016 Drop impact on a solid surface. Annu. Rev. Fluid Mech. 48, 365391.Google Scholar
Lewis, J. A. 2006 Direct ink writing of 3d functional materials. Adv. Funct. Mater. 16 (17), 21932204.Google Scholar
Mahmud, M. S., Cadotte, D. W., Vuong, B., Sun, C., Luk, T. W. H., Mariampillai, A. & Yang, V. X. D. 2013 Review of speckle and phase variance optical coherence tomography to visualize microvascular networks. J. Biomed. Opt. 18 (5), 050901.10.1117/1.JBO.18.5.050901Google Scholar
Mason, T. G., Ganesan, K., Van Zanten, J. H., Wirtz, D. & Kuo, S. C. 1997 Particle tracking microrheology of complex fluids. Phys. Rev. Lett. 79 (17), 32823285.10.1103/PhysRevLett.79.3282Google Scholar
Pine, D. J., Weitz, D. A., Chaikin, P. M. & Herbolzheimer, E. 1988 Diffusing wave spectroscopy. Phys. Rev. Lett. 60 (12), 1134.Google Scholar
Prosperetti, A. & Plesset, M. S. 1984 The stability of an evaporating liquid surface. Phys. Fluids 27 (7), 15901602.Google Scholar
Prud’homme, R. K., Wu, G. & Schneider, D. K. 1996 Structure and rheology studies of poly(oxyethylene-oxypropylene-oxyethylene) aqueous solution. Langmuir 12, 46514659.Google Scholar
Qian, B., Park, J. & Breuer, K. S. 2015 Large apparent slip at a moving contact line. Phys. Fluids 27 (9), 091703.Google Scholar
Rabal, H. J. & Braga, R. A. 2008 Dynamic Laser Speckle and Applications. CRC Press.10.1201/9781420060164Google Scholar
Sáenz, P. J., Sefiane, K., Kim, J., Matar, O. K. & Valluri, P. 2015 Evaporation of sessile drops: a three-dimensional approach. J. Fluid Mech. 772, 705739.10.1017/jfm.2015.224Google Scholar
Saïdi, A., Martin, C. & Magnin, A. 2010 Influence of yield stress on the fluid droplet impact control. J. Non-Newtonian Fluid Mech. 165 (11), 596606.10.1016/j.jnnfm.2010.02.020Google Scholar
Schiaffino, S. & Sonin, A. A. 1997a Formation and stability of liquid and molten beads on a solid surface. J. Fluid Mech. 343, 95110.Google Scholar
Schiaffino, S. & Sonin, A. A. 1997b On the theory for the arrest of an advancing molten contact line on a cold solid of the same material. Phys. Fluids 9 (8), 22272233.Google Scholar
Smith, M. I. & Bertola, V. 2010 Effect of polymer additives on the wetting of impacting droplets. Phys. Rev. Lett. 104, 14.Google Scholar
Squires, T. M. & Mason, T. G. 2009 Fluid mechanics of microrheology. Annu. Rev. Fluid Mech. 42 (1), 413438.Google Scholar
Stoeber, B., Hu, C.-M. J., Liepmann, D. & Muller, S. J. 2006 Passive flow control in microdevices using thermally responsive polymer solutions. Phys. Fluids 18, 053103.Google Scholar
Stoeber, B., Yang, Z., Liepmann, D. & Muller, S. J. 2005 Flow control in microdevices using thermally responsive triblock copolymers. J. Microelectromech. Syst. 14, 207213.10.1109/JMEMS.2004.839330Google Scholar
Sultan, E., Boudaoud, A. & Amar, M. B. 2005 Evaporation of a thin film: diffusion of the vapour and Marangoni instabilities. J. Fluid Mech. 543, 183202.10.1017/S0022112005006348Google Scholar
Talbot, E. L., Yang, L., Berson, A. & Bain, C. D. 2014 Control of the particle distribution in inkjet printing through an evaporation-driven sol–gel transition. ACS Appl. Mater. Interfaces 6 (12), 95729583.Google Scholar
Tavakoli, F., Davis, S. H. & Kavehpour, H. P. 2014 Spreading and arrest of a molten liquid on cold substrates. Langmuir 30 (34), 1015110155.Google Scholar
Wanka, G., Hoffmann, H. & Ulbricht, W. 1994 Phase diagrams and aggregation behavior of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) triblock copolymers in aqueous solutions. Macromolecules 27, 41454159.Google Scholar
Wereley, S. T. & Meinhart, C. D. 2010 Recent advances in micro-particle image velocimetry. Annu. Rev. Fluid Mech. 42, 557576.Google Scholar

Jalaal et al. supplementary movie

Dynamic speckle patterns for solution (left) and gel (right) phases.

Download Jalaal et al. supplementary movie(Video)
Video 862.9 KB