Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T15:58:35.628Z Has data issue: false hasContentIssue false

Estimation of transient heat transfer and fluid flow for alloy solidification in a rectangular cavity with an isothermal sidewall

Published online by Cambridge University Press:  14 August 2015

A. Plotkowski*
Affiliation:
Purdue Center for Metal Casting Research, School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
K. Fezi
Affiliation:
Purdue Center for Metal Casting Research, School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
M. J. M. Krane
Affiliation:
Purdue Center for Metal Casting Research, School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
*
Email address for correspondence: plotkoal@gmail.com

Abstract

Transient scaling and integral analyses were performed to predict trends in alloy solidification in a rectangular cavity cooled by an isothermal sidewall. The natural convection fluid flow was approximated by a scaling analysis for a laminar boundary layer at the solidification front, and was coupled to scaling and integral analyses of the energy equation to predict the solidification behaviour of the system. These analyses predicted several relevant aspects of the solidification process, including the time required to extinguish the initial superheat and the maximum local solidification time as a function of the system parameters and material properties. These results were verified by comparison to numerical simulations for an Al–4.5 wt% Cu alloy for various initial and boundary conditions and cavity aspect ratios. The analysis was compared to previous attempts to analyse similar fluid flow and solidification processes, and the limitations of the assumptions used for this analysis were discussed.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amberg, G. 1997 Parameter ranges in binary solidification from vertical boundaries. Intl J. Heat Mass Transfer 40, 25652578.CrossRefGoogle Scholar
Bejan, A. 1995 Convection Heat Transfer, 2nd edn. John Wiley & Sons.Google Scholar
Bennon, W. D. & Incropera, F. P. 1987a A continuum model for momentum, heat and species transport in binary solid–liquid phase change systems – I. Model formulation. Intl J. Heat Mass Transfer 30, 21612170.CrossRefGoogle Scholar
Bennon, W. D. & Incropera, F. P. 1987b A continuum model for momentum, heat and species transport in binary solid–liquid phase change systems – II. Application to solidification in a rectangular cavity. Intl J. Heat Mass Transfer 30, 21712187.CrossRefGoogle Scholar
Cho, S. H. & Sunderland, J. E. 1969 Heat-conduction problems with melting or freezing. Trans. ASME J. Heat Transfer 91, 421426.CrossRefGoogle Scholar
Chung, J. D., Lee, J. S., Choi, M. & Yoo, H. 2001 A refined similarity solution for the multicomponent alloy solidification. Intl J. Heat Mass Transfer 44, 24832492.CrossRefGoogle Scholar
Goodman, T. R. 1958 The heat-balance integral and its application to problems involving a change of phase. Trans. ASME 80, 335342.Google Scholar
Huppert, H. E. & Turner, J. S. 1981 Double-diffusive convection. J. Fluid Mech. 106, 299329.CrossRefGoogle Scholar
Jarvis, R. A. & Huppert, H. E. 1995 Solidification of a binary alloy of variable viscosity from a vertical boundary. J. Fluid Mech. 303, 103132.CrossRefGoogle Scholar
Krane, M. J. M. 2010 Modeling of transport phenomena during solidification processes. In ASM Handbook, Volume 22B, Metals Process Simulation, vol. 22, pp. 157167. ASM International.Google Scholar
Krane, M. J. M. & Incropera, F. P. 1996 A scaling analysis of the unidirectional solidification of a binary alloy. Intl J. Heat Mass Transfer 39, 35673579.CrossRefGoogle Scholar
Krane, M. J. M. & Incropera, F. P. 1997 Experimental validation of continuum mixture model for binary alloy solidification. Trans. ASME J. Heat Transfer 119, 783791.Google Scholar
Lin, W., Armfield, S. W. & Patterson, J. C. 2007 Cooling of a $\mathit{Pr}<1$ fluid in a rectangular container. J. Fluid Mech. 574, 85108.CrossRefGoogle Scholar
Muehlbauer, J. C., Hatcher, J. D., Lyons, D. W. & Sunderland, J. E. 1973 Transient heat transfer analysis of alloy solidification. Trans. ASME J. Heat Transfer 95, 324331.Google Scholar
Nilson, R. H. 1985 Countercurrent convection in a double-diffusive boundary layer. J. Fluid Mech. 160, 181210.CrossRefGoogle Scholar
Patankar, S. V. 1980 Numerical Heat Transfer and Fluid Flow. Hemisphere.Google Scholar
Prescott, P. J., Incropera, F. P. & Gaskell, D. R. 1994 Convective transport phenomena and macrosegregation during solidifiation of a binary metal alloy: II – Experiments and comparisons with numerical predictions. Trans. ASME J. Heat Transfer 116, 742749.CrossRefGoogle Scholar
Schetz, J. A. & Eichhorn, R. 1962 Unsteady natural convection in the vicinity of a doubly infinite vertical plate. Trans. ASME J. Heat Transfer 84, 334338.CrossRefGoogle Scholar
Thompson, M. E. & Szekely, J. 1988 Mathematical and physical modelling of double-diffusive convection of aqueous solutions crystallizing at a vertical wall. J. Fluid Mech. 187, 409433.CrossRefGoogle Scholar
Tien, R. H. & Geiger, G. E. 1967 A heat-transfer analysis of the solidification of a binary eutectic system. Trans. ASME J. Heat Transfer 89, 230233.CrossRefGoogle Scholar
Tien, R. H. & Geiger, G. E. 1968 The unidimensional solidification of a binary eutectic system with a time-dependent surface temperature. Trans. ASME J. Heat Transfer 90, 2731.Google Scholar
Turner, J. S. 1974 Double-diffusive phenomena. Annu. Rev. Fluid Mech. 6, 3756.Google Scholar
Voller, V. R. 1989 Development and application of a heat balance method for analysis of metallurgical solidification. Appl. Math. Model. 13, 311.Google Scholar
Voller, V. R. 1997 A similarity solution for the solidification of a multicomponent alloy. Intl J. Heat Mass Transfer 40, 28692877.CrossRefGoogle Scholar
Voller, V. R. & Swaminathan, C. R. 1991 General source-based method for solidification phase change. Numer. Heat Transfer B 19, 175189.CrossRefGoogle Scholar
Vreeman, C. & Incropera, F. P. 2000 The effect of free-floating dendrite and convection on macrosegregation in direct chill cast aluminum alloys. Part II: predictions for Al–Cu and Al–Mg alloys. Intl J. Heat Mass Transfer 43, 687704.Google Scholar
Woods, A. W. & Huppert, H. E. 1989 The growth of compositionally stratified solid above a horizontal boundary. J. Fluid Mech. 199, 2954.CrossRefGoogle Scholar