Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T05:19:59.406Z Has data issue: false hasContentIssue false

Detonation propagation for shock-driven, subsonic and supersonic confiner flow

Published online by Cambridge University Press:  20 December 2019

Mark Short*
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico, NM 87545, USA
Carlos Chiquete
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico, NM 87545, USA
James J. Quirk
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico, NM 87545, USA
*
Email address for correspondence: short1@lanl.gov

Abstract

We study the compressible flow dynamics of two-dimensional, steady detonation wave propagation in a high explosive (HE) confined by aluminium (Al) or stainless steel (SS), outside of which is an air layer. We examine how the thickness of the confinement affects the subsonic detonation driving zone structure (DDZ) and the detonation speed $(D_{0})$, demonstrating a strong dependence on whether the oblique shock-driven flow in the confiner is supersonic, as for SS, or subsonic, as for Al. A characteristic path analysis is used to examine the information flow from the material boundaries through the supersonic flow regions in both the HE and confiner that can impact the sonic surfaces bounding the subsonic flow regions. It is shown that the nature of gas-dynamic wave reflection off the SS–air or Al–air boundary can significantly influence the DDZ and $D_{0}$.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bdzil, J. B. 1981 Steady-state two-dimensional detonation. J. Fluid Mech. 108, 195226.CrossRefGoogle Scholar
Bdzil, J. B. & Stewart, D. S. 2007 The dynamics of detonation in explosive systems. Annu. Rev. Fluid Mech. 39, 263292.CrossRefGoogle Scholar
Chiquete, C. & Short, M. 2019 Characteristic path analysis of confinement influence on steady two-dimensional detonation propagation. J. Fluid Mech. 863, 789816.CrossRefGoogle Scholar
Davis, W. C. 1998 Shock waves; rarefaction waves; equations of state. In Explosive Effects and Applications, pp. 47113. Springer.CrossRefGoogle Scholar
Fedkiw, R. P., Aslam, T. D., Merriman, B. & Osher, S. 1999 A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152 (2), 457492.CrossRefGoogle Scholar
Gamezo, V. N. & Oran, E. S. 1997 Reaction-zone structure of a steady-state detonation wave in a cylindrical charge. Combust. Flame 109, 253265.CrossRefGoogle Scholar
Le Métayer, O. & Saurel, R. 2016 The Noble–Abel stiffened-gas equation of state. Phys. Fluids 28, 046102.CrossRefGoogle Scholar
Marsh, S. P. 1980 LASL Shock Hugoniot Data. University of California Press.Google Scholar
Menikoff, R. 2007 Empirical equations of state for solids. In Solids I (ed. Horie, Y.), Shock Wave Science and Technology Reference Library, vol. 2, pp. 143188. Springer.Google Scholar
Quirk, J. J.2006 Towards an analysis of the Ghost Fluid method. Tech. Rep. LA-UR-19-30913. Los Alamos National Laboratory, Los Alamos, NM, https://research-online.lanl.gov/oppie/service.Google Scholar
Quirk, J. J.2007 amr_sol:multimat. Tech. Rep. LA-UR-07-0539. Los Alamos National Laboratory.Google Scholar
Schoch, S., Nikiforakis, N. & Lee, B. J. 2013 The propagation of detonation waves in non-ideal condensed-phase explosives confined by high sound-speed materials. Phys. Fluids 25 (8), 086102.CrossRefGoogle Scholar
Sharpe, G. J. & Braithwaite, M. 2005 Steady non-ideal detonations in cylindrical sticks of explosives. J. Engng Maths 53 (1), 3958.CrossRefGoogle Scholar
Short, M., Anguelova, I. I., Aslam, T. D., Bdzil, J. B., Henrick, A. K. & Sharpe, G. J. 2008 Stability of detonations for an idealized condensed-phase model. J. Fluid Mech. 595, 4582.CrossRefGoogle Scholar
Short, M., Bdzil, J. B. & Anguelova, I. I. 2006 Stability of Chapman–Jouguet detonations for a stiffened-gas model of condensed-phase explosives. J. Fluid Mech. 552, 299309.CrossRefGoogle Scholar
Short, M. & Quirk, J. J. 2018 High explosive detonation-confiner interations. Annu. Rev. Fluid Mech. 50, 215242.CrossRefGoogle Scholar
Short, M., Quirk, J. J., Chiquete, C. D. & Meyer, C. D. 2018 Detonation propagation in a circular arc: reactive burn modelling. J. Fluid Mech. 835, 970998.CrossRefGoogle Scholar
Stewart, D. S. & Bdzil, J. B. 1989 Examples of detonation shock dynamics for detonation wave spread applications. In Ninth Symposium (International) on Detonation, Office of the Chief of Naval Research.  OCNR 113291-7, pp. 773783.Google Scholar
Vidal, P., Cowperthwaite, M., Presles, H. N. & Bouton, E. 1994 A study of the curvature of a two-dimensional detonation wave at an explosive-confinement interface. In AIP Conference Proceedings, vol. 309, pp. 13531356. AIP.CrossRefGoogle Scholar