Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T02:55:48.757Z Has data issue: false hasContentIssue false

Coupling and stability of interfacial waves in liquid metal batteries

Published online by Cambridge University Press:  20 April 2018

G. M. Horstmann*
Affiliation:
Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
N. Weber
Affiliation:
Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
T. Weier
Affiliation:
Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
*
Email address for correspondence: g.horstmann@hzdr.de

Abstract

We investigate the coupling dynamics of interfacial waves in liquid metal batteries and its effects on the battery’s operation safety. Similar to aluminium reduction cells, liquid metal batteries can be highly susceptible to magnetohydrodynamically exited interfacial instabilities. The resulting waves are capable of provoking short-circuits. Owing to the presence of two metal-electrolyte interfaces that may step into resonance, the wave dynamics in liquid metal batteries is particularly complex. In the first part of this paper, we present a potential flow analysis of coupled gravity–capillary interfacial waves. While we are focusing here on liquid metal batteries with circular cross-section, the theory is applicable to arbitrary stably stratified three-layer systems. Analytical expressions for the amplitude ratio and the wave frequencies are derived. It is shown that the wave coupling can be completely described by two independent dimensionless parameters. We further provide a decoupling criterion that suggests that wave coupling will be present in most future liquid metal batteries. In the second part, the theory is validated by comparing it with multiphase direct numerical simulations. An accompanying parameter study is conducted to analyse the system stability for interfaces coupled to varying degrees. Three different coupling regimes are identified involving characteristic coupling dynamics. For strongly coupled interfaces we observe novel instabilities that may have beneficial effects on the operational safety.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A.(Eds) 1972 Handbook of Mathematical Functions, 10th edn. (Applied Mathematics Series) , vol. 55. National Bureau of Standards.Google Scholar
Agruss, B., Karas, H. R. & Decker, V. L.1962 Design and development of a liquid metal fuel cell. Tech. Rep. ASD-TDR-62-1045.CrossRefGoogle Scholar
Aqra, F. & Ayyad, A. 2011 Theoretical estimation of temperature-dependent surface tension of liquid antimony, boron, and sulfur. Metall. Mater. Trans. B 42 (3), 437440.CrossRefGoogle Scholar
Beljajew, A. I., Rapoport, M. B. & Firsanowa, L. A. 1957 Metallurgie des Aluminiums, vol. 2. VEB Verlag Technik.Google Scholar
Bojarevics, V. & Pericleous, K. 2006 Comparison of MHD models for aluminium reduction cells. In Proc. TMS Light Met., pp. 347352.Google Scholar
Bojarevics, V. & Romerio, M. V. 1994 Long waves instability of liquid metal–electrolyte interface in aluminium electrolysis cell: a generalization of Sele’s criterion. Eur. J. Mech. (B/Fluids) 13, 3356.Google Scholar
Bojarevics, V. & Tucs, A. 2017 MHD of large scale liquid metal batteries. In Light Metals (ed. Ratvik, A.). The Minerals, Metals & Materials Series. Springer.Google Scholar
Brackbill, J. U., Kothe, D. B. & Zemach, C. 1992 A continuum method for modeling surface tension. J. Comput. Phys. 100, 335354.CrossRefGoogle Scholar
Bradwell, D. J.2011 Liquid metal batteries: ambipolar electrolysis and alkaline earth electroalloying cells. PhD thesis, Massachusetts Institute of Technology.Google Scholar
Bradwell, D. J., Kim, H., Sirk, A. H. C. & Sadoway, D. R. 2012 Magnesium–antimony liquid metal battery for stationary energy storage. J. Am. Chem. Soc. 134 (4), 18951897.CrossRefGoogle ScholarPubMed
Cairns, E. J., Crouthamel, C. E., Fischer, A. K., Foster, M. S., Hesson, J. C., Johnson, C. E., Shimotake, H. & Tevebaugh, A. D. 1967 Galvanic Cells with Fused-Salt Electrolytes. Argonne National Laboratory.CrossRefGoogle Scholar
Cairns, E. J. & Shimotake, H. 1969a High-temperature batteries. Science 164, 13471355.CrossRefGoogle ScholarPubMed
Cairns, E. J. & Shimotake, H. 1969b Recent advances in fuel cells and their application to new hybrid systems. Adv. Chem. 90, 321350.Google Scholar
Cappanera, L., Guermond, J.-L., Herreman, W. & Nore, C. 2017 Momentum-based approximation of incompressible multiphase fluid flows: momentum-based approximation of incompressible multiphase fluid flows. Int. J. Numer. Meth. Fluids 86 (8), 541563.CrossRefGoogle Scholar
Chum, H. L. & Osteryoung, R. A. 1980 Review of Thermally Regenerative Electrochemical Systems. Solar Energy Research Institute.Google Scholar
Chum, H. L. & Osteryoung, R. A. 1981 Review of Thermally Regenerative Electrochemical Cells. Solar Energy Research Institute.Google Scholar
Davidson, P. A. 2001 An Introduction to Magnetohydrodynamics, Cambridge Texts in Applied Mathematics. Cambridge University Press.CrossRefGoogle Scholar
Davidson, P. A. & Lindsay, R. I. 1998 Stability of interfacial waves in aluminium reduction cells. J. Fluid Mech. 362, 273295.CrossRefGoogle Scholar
Ferziger, J. H. & Perić, M. 1996 Computational Methods for Fluid Dynamics. Springer.CrossRefGoogle Scholar
Gerbeau, J.-F., Le Bris, C. & Lelievre, T.2001, Simulations of MHD flows with moving interfaces. Tech. Rep. RR-4277. INRIA.Google Scholar
Gerbeau, J.-F., Le Bris, C. & Lelièvre, T. 2006 Mathematical Methods for the Magnetohydrodynamics of Liquid Metals, Numerical Mathematics and Scientific Computation. Oxford University Press.CrossRefGoogle Scholar
Guermond, J.-L., Laguerre, R., Léorat, J. & Nore, C. 2009 Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a Fourier/finite element technique and an interior penalty method. J. Comput. Phys. 228 (8), 27392757.CrossRefGoogle Scholar
Herédy, L. A., Iverson, M. L., Ulrich, G. D. & Recht, H. L. 1967 Development of a thermally regenerative sodium–mercury galvanic system part I. Electrochemical and chemical behavior of sodium–mercury galvanic cells. In Regenerative EMF Cells, pp. 3042.CrossRefGoogle Scholar
Herreman, W., Nore, C., Cappanera, L. & Guermond, J.-L. 2015 Tayler instability in liquid metal columns and liquid metal batteries. J. Fluid Mech. 771, 79114.CrossRefGoogle Scholar
Ibrahim, R. A. 2005 Liquid Sloshing Dynamics Theory and Applications. Cambridge University Press.CrossRefGoogle Scholar
International Atomic Energy Agency 2008 Thermophysical Properties of Materials for Nuclear Engineering: A Tutorial and Collection of Data. International Atomic Energy Agency.Google Scholar
Issenmann, B., Laroche, C. & Falcon, E. 2016 Wave turbulence in a two-layer fluid: coupling between free surface and interface waves. Eur. Phys. Lett. 116, 64005.CrossRefGoogle Scholar
Janz, G. J., Allen, C. B., Bansal, N. P., Murphy, R. M. & Tomkins, R. P. T. 1979 Physical Properties Data Compilations Relevant to Energy Storage. II. Molten Salts: Data on Single and Multi-Component Salt Systems, U.S. Department of Commerce.Google Scholar
Janz, G. J., Tomkins, R. P. T., Allen, C. B., Downey, J. R., Gardner, G. L., Krebs, U. & Singer, S. K. 1975 Molten salts: clorides and mixtures. J. Phys. Chem. Ref. Data 4 (4), 8711178.CrossRefGoogle Scholar
Karas, H. R. & Mangus, J. D.1963 First quarterly technical progress report on research and development of an advanced laboratory liquid metal regenerative fuel cell. Tech. Rep. EDR 3344. Allison Division of General Motors Corporation.Google Scholar
Kelley, D. H. & Sadoway, D. R. 2014 Mixing in a liquid metal electrode. Phys. Fluids 26 (5), 057102.CrossRefGoogle Scholar
Kim, H., Boysen, D. A., Newhouse, J. M., Spatocco, B. L., Chung, B., Burke, P. J., Bradwell, D. J., Jiang, K., Tomaszowska, A. A., Wang, K., Wei, W., Ortiz, L. A., Barriga, S. A., Poizeau, S. M. & Sadoway, D. R. 2013 Liquid metal batteries: past, present, and future. Chem. Rev. 113 (3), 20752099.CrossRefGoogle ScholarPubMed
Köllner, T., Boeck, T. & Schumacher, J. 2017 Thermal Rayleigh–Marangoni convection in a three-layer liquid-metal-battery model. Phys. Rev. E 95, 053114.Google Scholar
Lukyanov, A., El, G. & Molokov, S. 2001 Instability of MHD-modified interfacial gravity waves revisited. Phys. Lett. A 290, 165172.CrossRefGoogle Scholar
Lyon, R. N.(Ed.) 1954 Liquid-Metals Handbook, Oak Ridge National Laboratory.Google Scholar
Mohapatra, S. C., Karmakar, D. & Sahoo, T. 2011 On cappillary gravity-wave motion in two-layer fluids. J. Engng Maths 71, 253277.CrossRefGoogle Scholar
Molokov, S., El, G. & Lukyanov, A. 2011 Classification of instability modes in a model of aluminium reduction cells with a uniform magnetic field. Theor. Comput. Fluid Dyn. 25 (5), 261279.CrossRefGoogle Scholar
Munger, D. & Vincent, A. 2006 Electric boundary conditions at the anodes in aluminum reduction cells. Metall. Mater. Trans. B 37B, 10251035.CrossRefGoogle Scholar
Munger, D. & Vincent, A. 2008 A cylindrical model for rotational MHD instabilities in aluminum reduction cells. Theor. Comput. Fluid Dyn. 22, 363382.CrossRefGoogle Scholar
Pearson, T. G. & Phillips, H. W. L. 1957 The production and properties of super-purity aluminium. Metall. Rev. 2 (8), 305360.CrossRefGoogle Scholar
Platzer, B. & Noll, G. 1983 Möglichkeiten zur analytischen Beschreibung der turbulenten Strömung in unbewehrten und teilbewehrten Rührkesseln mit radialfördernden Rührern. Chem. Techn. 35 (5), 235238.Google Scholar
Rusche, H.2002 Computational fluid dynamics of dispersed two-phase flows at high phase fractions. PhD thesis, Imperial College London.Google Scholar
Santalo, L. A. 1993 Vectores Y Tensores Con Sus Aplicaciones. Buenos Aires.Google Scholar
Sele, T. 1977 Instabilities of the metal surface in electrolytic alumina reduction cells. Metall. Trans. B 8 (4), 613618.CrossRefGoogle Scholar
Shen, Y. & Zikanov, O. 2016 Thermal convection in a liquid metal battery. Theor. Comput. Fluid Dyn. 30 (4), 275294.CrossRefGoogle Scholar
Shimotake, H., Rogers, G. L. & Cairns, E. J. 1969 Secondary cells with lithium anodes and immobilized fused-salt electrolytes. Ind. Engng Chem. Process Des. Dev. 8 (1), 5156.CrossRefGoogle Scholar
Smithells, C. J., Gale, W. F. & Totemeier, T. C. 2004 Smithells Metals Reference Book, 8th edn. Elsevier Butterworth-Heinemann.Google Scholar
Sneyd, A. D. & Wang, A. 1994 Interfacial instability due to MHD mode coupling in aluminium reduction cells. J. Fluid Mech. 263, 343359.CrossRefGoogle Scholar
Sobolev, V. 2007 Thermophysical properties of lead and lead–bismuth eutectic. J. Nucl. Mater. 362 (2-3), 235247.CrossRefGoogle Scholar
Sobolev, V. 2010 Database of Thermophysical Properties of Liquid Metal Coolants for GEN-IV. SCK CEN.Google Scholar
Spatocco, B. L., Burke, P. J. & Sadoway, D. R. 2014 Low temperature liquid metal batteries for grid-scaled storage. US Patent Nr. 0099522 A1.Google Scholar
Stefani, F., Galindo, V., Kasprzyk, C., Landgraf, S., Seilmayer, M., Starace, M., Weber, N. & Weier, T. 2016 Magnetohydrodynamic effects in liquid metal batteries. IOP Conf. Ser. Mater. Sci. Engng 143, 012024.Google Scholar
Stefani, F., Weier, T., Gundrum, T. & Gerbeth, G. 2011 How to circumvent the size limitation of liquid metal batteries due to the Tayler instability. Energy Convers. Manage. 52, 29822986.CrossRefGoogle Scholar
Steiner, G.2009 Simulation numérique de phénomènes MHD: Application à l’électrolyse de l’aluminium. PhD thesis, École polytechnique fédérale de Lausanne.Google Scholar
Swinkels, D. A. J. 1971 Molten salt batteries and fuel cells. In Advances in Molten Salt Chemistry (ed. Braunstein, J., Mamantov, G. & Smith, G. P.), vol. 1, pp. 165223. Plenum Press.CrossRefGoogle Scholar
Ubbink, O.1997 Numerical prediction of two fluid systems with sharp interfaces. PhD thesis, University of London.Google Scholar
Wang, K., Jiang, K., Chung, B., Ouchi, T., Burke, P. J., Boysen, D. A., Bradwell, D. J., Kim, H., Muecke, U. & Sadoway, D. R. 2014 Lithium–antimony–lead liquid metal battery for grid-level energy storage. Nature 514 (7522), 348350.CrossRefGoogle ScholarPubMed
Weaver, R. D., Smith, S. W. & Willmann, N. L. 1962 The sodium–tin liquid–metal cell. J. Electrochem. Soc. 109 (8), 653657.CrossRefGoogle Scholar
Weber, N., Beckstein, P., Galindo, V., Herreman, W., Nore, C., Stefani, F. & Weier, T. 2017a Metal pad roll instability in liquid metal batteries. Magnetohydrodynamics 53 (1), 129140.CrossRefGoogle Scholar
Weber, N., Beckstein, P., Galindo, V., Starace, M. & Weier, T.2018 Electro-vortex flow simulation using coupled meshes. Comput. Fluids (in press, DOI: https://doi.org/10.1016/j.compfluid.2018.03.047).CrossRefGoogle Scholar
Weber, N., Beckstein, P., Herreman, W., Horstmann, G. M., Nore, C., Stefani, F. & Weier, T. 2017b Sloshing instability and electrolyte layer rupture in liquid metal batteries. Phys. Fluids 29, 054101.CrossRefGoogle Scholar
Weber, N., Galindo, V., Priede, J., Stefani, F. & Weier, T. 2015a The influence of current collectors on Tayler instability and electro vortex flows in liquid metal batteries. Phys. Fluids 27, 014103.CrossRefGoogle Scholar
Weber, N., Galindo, V., Stefani, F. & Weier, T. 2015b The Tayler instability at low magnetic Prandtl numbers: between chiral symmetry breaking and helicity oscillations. New J. Phys. 17 (11), 113013.CrossRefGoogle Scholar
Weber, N., Galindo, V., Stefani, F., Weier, T. & Wondrak, T. 2013 Numerical simulation of the Tayler instability in liquid metals. New J. Phys. 15, 043034.CrossRefGoogle Scholar
Weier, T., Bund, A., El-Mofid, W., Horstmann, G. M., Lalau, C.-C., Landgraf, S., Nimtz, M., Starace, M., Stefani, F. & Weber, N. 2017 Liquid metal batteries – materials selection and fluid dynamics. IOP Conf. Ser.: Mater. Sci. Engng 228, 012013.CrossRefGoogle Scholar
Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12 (6), 620631.CrossRefGoogle Scholar
Woolfenden, H. C. & Parau, E. I. 2011 Numerical computation of solitary waves in a two-layer fluid. J. Fluid Mech. 688, 528550.CrossRefGoogle Scholar
Zhang, S. & Zhao, X. 2004 General formulations for Rhie–Chow interpolation. In ASME 2004 Heat Transfer/Fluids Engineering Summer Conference, ASME.Google Scholar
Zikanov, O. 2015 Metal pad instabilities in liquid metal batteries. Phys. Rev. E 92, 063021.Google ScholarPubMed
Zikanov, O.2017 Shallow water modeling of rolling pad instability in liquid metal batteries. arXiv:1706:08589v1.Google Scholar
Zinkle, S. J. 1998 Summary of physical properties for lithium, Pb-17Li, and (LiF)n⋅BeF2 Coolants. In APEX Study Meeting, Sandia National Laboratories.Google Scholar