Published online by Cambridge University Press: 10 August 2012
The present investigation of aerofoil self-noise generation and propagation concerns the effects of mean flow and quadrupole sources on the broadband noise that arises from the interaction of turbulent boundary layers with the aerofoil trailing edge and the tonal noise that arises from vortex shedding generated by laminar boundary layers and trailing-edge bluntness. Compressible large-eddy simulations (LES) are conducted for a NACA0012 aerofoil with rounded trailing edge for four flow configurations with different angles of incidence, boundary layer tripping configurations and free-stream Mach numbers. The Reynolds number based on the aerofoil chord is fixed at . The acoustic predictions are performed by the Ffowcs Williams & Hawkings (FWH) acoustic analogy formulation and incorporate convective effects. Surface and volume integrations of dipole and quadrupole source terms appearing in the FWH equation are performed using a three-dimensional wideband multi-level adaptive fast multipole method (FMM) in order to accelerate the calculations of aeroacoustic integrals. In order to validate the numerical solutions, flow simulation and acoustic prediction results are compared to experimental data available in the literature and good agreement is observed in terms of both aerodynamic and aeroacoustic results. For low-Mach-number flows, quadrupole sources can be neglected in the FWH equation and mean flow effects appear only for high frequencies. However, for higher speeds, convection effects are relevant for all frequencies and quadrupole sources have a more pronounced effect for medium and high frequencies. The convective effects are most readily observed in the upstream direction.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.