Hostname: page-component-54dcc4c588-54gsr Total loading time: 0 Render date: 2025-10-05T13:27:13.885Z Has data issue: false hasContentIssue false

Collision statistics of finite-size monodisperse droplets in homogeneous isotropic turbulence

Published online by Cambridge University Press:  01 October 2025

Victor Boniou*
Affiliation:
IFP Energies Nouvelles, Institut Carnot IFPEN Transports Energie, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France
Stephane Jay
Affiliation:
IFP Energies Nouvelles, Institut Carnot IFPEN Transports Energie, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France
Guillaume Vinay
Affiliation:
IFP Energies Nouvelles, Institut Carnot IFPEN Transports Energie, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize, France
Jean-Lou Pierson
Affiliation:
IFP Energies Nouvelles, Institut Carnot IFPEN Transports Energie, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize, France
*
Corresponding author: Victor Boniou, victor.boniou@ifpen.fr

Abstract

In this study we focus on the collision rate and contact time of finite-sized droplets in homogeneous, isotropic turbulence. Additionally, we concentrate on sub-Hinze–Kolmogorov droplet sizes to prevent fragmentation events. After reviewing previous studies, we theoretically establish the equivalence of spherical and cylindrical formulations of the collision rate. We also obtained a closed-form expression for the collision rate of inertial droplets under the assumption of inviscid interactions. We then perform droplet-resolved simulations using the Basilisk solver with a multi-field volume-of-fluid method to prevent numerical droplet coalescence, ensuring a constant number of droplets of the same size within the domain, thereby allowing for the accumulation of collision statistics. The collision statistics are studied from numerical simulations, varying parameters such as droplet volume fraction, droplet size relative to the dissipative scale, density ratio and viscosity ratio. Our results show that the contact time is finite, leading to non-binary droplet interactions at high volume fractions. Additionally, the contact duration is well predicted by the eddy turnover time. We also find that the radial distribution at contact is significantly smaller than that predicted by the hard-sphere model due to droplet deformation in close proximity. Furthermore, we show that for neutrally buoyant droplets, the mean relative velocity is similar to the mean relative velocity of the continuous phase, except when the droplets are close. Finally, we demonstrate that the collision rate obeys the appropriate theoretical law, although a numerical prefactor weakly varies as a function of the dimensionless parameters, which differs from the constant prefactor from theory.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abrahamson, J. 1975 Collision rates of small particles in a vigorously turbulent fluid. Chem. Engng Sci. 30 (11), 13711379.10.1016/0009-2509(75)85067-6CrossRefGoogle Scholar
Andreotti, B., Forterre, Y. & Pouliquen, O. 2013 Granular Media: Between Fluid and Solid. Cambridge University Press.Google Scholar
Anthony, C.R., 2023 Sharp interface methods for simulation and analysis of free surface flows with singularities: breakup and coalescence. Annu. Rev. Fluid Mech. 55, 707747.10.1146/annurev-fluid-120720-014714CrossRefGoogle Scholar
Appel, K. & Haken, W. 1977 The solution of the four-color-map problem. Sci. Am. 237 (4), 108121.Google Scholar
Balcázar, N., Lehmkuhl, O., Rigola, J. & Oliva, A. 2015 A multiple marker level-set method for simulation of deformable fluid particles. Intl J. Multiphase Flow 74, 125142.Google Scholar
Bassenne, M., Urzay, J., Park, G.I. & Moin, P. 2016 Constant-energetics physical-space forcing methods for improved convergence to homogeneous-isotropic turbulence with application to particle-laden flows. Phys. Fluids 28 (3), 035114.10.1063/1.4944629CrossRefGoogle Scholar
Bell, J.B., Colella, P. & Glaz, H.M. 1989 A second-order projection method for the incompressible Navier–Stokes equations. J. Comput. Phys. 85 (2), 257283.10.1016/0021-9991(89)90151-4CrossRefGoogle Scholar
Boniou, V., Jay, S., Vinay, G. & Pierson, J.-L. 2025 Revisiting the linear forcing of turbulence in two-phase flows. Phys. Rev. Fluids 10 (2), 024301.10.1103/PhysRevFluids.10.024301CrossRefGoogle Scholar
Boniou, V., Schmitt, T. & Vié, A. 2022 Comparison of interface capturing methods for the simulation of two-phase flow in a unified low-Mach framework. Intl J. Multiphase Flow 149, 103957.CrossRefGoogle Scholar
Brackbill, J.U., Kothe, D.B. & Zemach, C. 1992 A continuum method for modeling surface tension. J. Comput. Phys. 100 (2), 335354.Google Scholar
Bragg, A.D. & Collins, L.R. 2014 New insights from comparing statistical theories for inertial particles in turbulence: II. Relative velocities. New J. Phys. 16 (5), 055014.Google Scholar
Brańka, A.C. & Heyes, D.M. 2011 Pair correlation function of soft-sphere fluids. J. Chem. Phys. 134 (6), 064115.10.1063/1.3554363CrossRefGoogle ScholarPubMed
Caccamo, C. 1996 Integral equation theory description of phase equilibria in classical fluids. Phys. Rep. 274 (1–2), 1105.CrossRefGoogle Scholar
Cannon, I., Soligo, G. & Rosti, M.E. 2024 Morphology of clean and surfactant-laden droplets in homogeneous isotropic turbulence. J. Fluid Mech. 987, A31.10.1017/jfm.2024.380CrossRefGoogle Scholar
Carnahan, N.F. & Starling, K.E. 1969 Equation of state for nonattracting rigid spheres. J. Chem. Phys. 51 (2), 635636.10.1063/1.1672048CrossRefGoogle Scholar
Chandler, D. 1987 Introduction to modern statistical. Mechanics 5 (449), 11.Google Scholar
Chapman, S. & Cowling, T.G. 1990 The Mathematical Theory of Non-Uniform Gases: an Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge University Press.Google Scholar
Chesters, A.K. 1991 Modelling of coalescence processes in fluid-liquid dispersions: a review of current understanding. Chem. Engng Res. Des. 69 (A4), 259270.Google Scholar
Chesters, A.K. & Hofman, G. 1982 Bubble coalescence in pure liquids. Appl. Sci. Res. 38, 353361.10.1007/BF00385965CrossRefGoogle Scholar
Chouippe, A. & Uhlmann, M. 2015 Forcing homogeneous turbulence in direct numerical simulation of particulate flow with interface resolution and gravity. Phys. Fluids 27 (12), 123301.10.1063/1.4936274CrossRefGoogle Scholar
Christodoulou, K.N. & Scriven, L.E. 1992 Discretization of free surface flows and other moving boundary problems. J. Comput. Phys. 99 (1), 3955.10.1016/0021-9991(92)90273-2CrossRefGoogle Scholar
Cisse, M., Homann, H. & Bec, J. 2013 Slipping motion of large neutrally buoyant particles in turbulence. J. Fluid Mech. 735, R1.10.1017/jfm.2013.490CrossRefGoogle Scholar
Coulaloglou, C.A. & Tavlarides, L.L. 1977 Description of interaction processes in agitated liquid–liquid dispersions. Chem. Engng Sci. 32 (11), 12891297.10.1016/0009-2509(77)85023-9CrossRefGoogle Scholar
Crialesi-Esposito, M., Chibbaro, S. & Brandt, L. 2023 The interaction of droplet dynamics and turbulence cascade. Commun. Phys. 6 (1), 5.Google Scholar
Crialesi-Esposito, M., Rosti, M.E., Chibbaro, S. & Brandt, L. 2022 Modulation of homogeneous and isotropic turbulence in emulsions. J. Fluid Mech. 940, A19.Google Scholar
Curtiss, C.F. 1956 Kinetic theory of nonspherical molecules. J. Chem. Phys. 24 (2), 225241.10.1063/1.1742459CrossRefGoogle Scholar
Curtiss, C.F. & Muckenfuss, C. 1957 Kinetic theory of nonspherical molecules. II. J. Chem. Phys. 26 (6), 16191636.10.1063/1.1743595CrossRefGoogle Scholar
Dandy, D.S. & Leal, L.G. 1989 Buoyancy-driven motion of a deformable drop through a quiescent liquid at intermediate Reynolds numbers. J. Fluid Mech. 208, 161192.10.1017/S0022112089002818CrossRefGoogle Scholar
Davis, R.H., Schonberg, J.A. & Rallison, J.M. 1989 The lubrication force between two viscous drops. Phys. Fluids A: Fluid Dyn. 1 (1), 7781.10.1063/1.857525CrossRefGoogle Scholar
Davis, S.L., Dittmann, T.B., Jacobs, G.B. & Don, W.-S. 2013 Dispersion of a cloud of particles by a moving shock: effects of the shape, angle of rotation, and aspect ratio. J. Appl. Mech. Tech. Phys. 54, 900912.10.1134/S0021894413060059CrossRefGoogle Scholar
Deike, L., Melville, W.K. & Popinet, S. 2016 Air entrainment and bubble statistics in breaking waves. J. Fluid Mech. 801, 91129.10.1017/jfm.2016.372CrossRefGoogle Scholar
Desjardins, O., McCaslin, J., Owkes, M. & Brady, P. 2013 Direct numerical and large-eddy simulation of primary atomization in complex geometries. Atomiz. Sprays 23 (11), 10011048.Google Scholar
Dodd, M.S. & Ferrante, A. 2016 On the interaction of Taylor length scale size droplets and isotropic turbulence. J. Fluid Mech. 806, 356412.10.1017/jfm.2016.550CrossRefGoogle Scholar
Dolata, B.E. & Zia, R.N. 2021 Faxén formulas for particles of arbitrary shape and material composition. J. Fluid Mech. 910, A22.Google Scholar
Durlofsky, L., Brady, J.F. & Bossis, G. 1987 Dynamic simulation of hydrodynamically interacting particles. J. Fluid Mech. 180, 2149.10.1017/S002211208700171XCrossRefGoogle Scholar
Elghobashi, S. 2019 Direct numerical simulation of turbulent flows laden with droplets or bubbles. Annu. Rev. Fluid Mech. 51, 217244.10.1146/annurev-fluid-010518-040401CrossRefGoogle Scholar
Escudié, R. & Liné, A. 2003 Experimental analysis of hydrodynamics in a radially agitated tank. AIChE J. 49 (3), 585603.Google Scholar
Eswaran, V. & Pope, S.B. 1988 An examination of forcing in direct numerical simulations of turbulence. Comput. Fluids 16 (3), 257278.10.1016/0045-7930(88)90013-8CrossRefGoogle Scholar
Fintzi, N. 2025 Statistical modelling of dispersed two-phase flows: application to rising suspension of droplets. Phd thesis, Sorbonne Universite, Paris, France.Google Scholar
Fintzi, N. & Pierson, J.-L. 2026 Averaged equations for disperse two-phase flow with interfacial transport. Intl J. Multiphase Flow 194, 105424.CrossRefGoogle Scholar
Fintzi, N., Pierson, J.-L. & Popinet, S. 2024 Buoyancy driven motion of non-coalescing inertial drops: microstructure modeling with nearest particle statistics. Acta Mechanica 124.10.1007/s00707-024-04107-6CrossRefGoogle Scholar
Francois, M.M., Cummins, S.J., Dendy, E.D., Kothe, D.B., Sicilian, J.M. & Williams, M.W. 2006 A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework. J. Comput. Phys. 213 (1), 141173.Google Scholar
Gemello, L., Cappello, V., Augier, F., Marchisio, D. & Plais, C. 2018 CFD-based scale-up of hydrodynamics and mixing in bubble columns. Chem. Engng Res. Des. 136, 846858.Google Scholar
Herrmann, M. 2010 A parallel Eulerian interface tracking/Lagrangian point particle multi-scale coupling procedure. J. Comput. Phys. 229 (3), 745759.10.1016/j.jcp.2009.10.009CrossRefGoogle Scholar
Heylmun, J.C., Fox, R.O. & Passalacqua, A. 2021 A quadrature-based moment method for the evolution of the joint size-velocity number density function of a particle population. Comput. Phys. Commun. 267, 108072.10.1016/j.cpc.2021.108072CrossRefGoogle Scholar
Hinze, J.O. 1955 Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J. 1 (3), 289295.10.1002/aic.690010303CrossRefGoogle Scholar
Hirt, C.W. & Nichols, B.D. 1981 Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39 (1), 201225.CrossRefGoogle Scholar
Homann, H. & Bec, J. 2010 Finite-size effects in the dynamics of neutrally buoyant particles in turbulent flow. J. Fluid Mech. 651, 8191.10.1017/S0022112010000923CrossRefGoogle Scholar
Innocenti, A., Jaccod, A., Popinet, S. & Chibbaro, S. 2021 Direct numerical simulation of bubble-induced turbulence. J. Fluid Mech. 918, A23.10.1017/jfm.2021.288CrossRefGoogle Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.10.1017/S0022112095000462CrossRefGoogle Scholar
Kamp, A.M., Chesters, A.K., Colin, C. & Fabre, J. 2001 Bubble coalescence in turbulent flows: a mechanistic model for turbulence-induced coalescence applied to microgravity bubbly pipe flow. Intl J. Multiphase Flow 27 (8), 13631396.Google Scholar
Khrapak, S., Klumov, B. & Couëdel, L. 2017 Collective modes in simple melts: transition from soft spheres to the hard sphere limit. Sci. Rep.-UK 7 (1), 7985.Google Scholar
Kim, S. & Karrila, S.J. 2013 Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann.Google Scholar
Kolmogorov, A. 1949 On the breakage of drops in a turbulent flow. Dokl. Akad. Navk. SSSR 66, 825828.Google Scholar
Kuboi, R., Komasawa, I. & Otake, T. 1972 Collision and coalescence of dispersed drops in turbulent liquid flow. J. Chem. Engng Japan 5 (4), 423424.Google Scholar
Lavieville, J. 1997 Simulations numériques et modélisation des interactions entre l’entraînement par la turbulence et les collisions interparticulaires en écoulements gaz-solide. PhD thesis, Universite de Rouen, France.Google Scholar
Leal, L.G. 2007 Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes, vol. 7, Cambridge University Press.CrossRefGoogle Scholar
Liao, Y. & Lucas, D. 2010 A literature review on mechanisms and models for the coalescence process of fluid particles. Chem. Engng Sci. 65 (10), 28512864.10.1016/j.ces.2010.02.020CrossRefGoogle Scholar
Liu, H. 2024 Simple and accurate expressions for radial distribution functions of hard disk and hard sphere fluids. Mol. Phys. 122 (13), e2299250.10.1080/00268976.2023.2299250CrossRefGoogle Scholar
Lu, J. & Tryggvason, G. 2018 Direct numerical simulations of multifluid flows in a vertical channel undergoing topology changes. Phys. Rev. Fluids 3 (8), 084401.Google Scholar
Lundgren, T.S. 2003 Linearly forces isotropic turbulence, MINNESOTA UNIV MINNEAPOLIS, Tech. Rep.Google Scholar
Ma, D. & Ahmadi, G. 1986 An equation of state for dense rigid sphere gases. J. Chem. Phys. 84 (6), 34493450.Google Scholar
Marchisio, D.L. & Fox, R.O. 2013 Computational Models for Polydisperse Particulate and Multiphase Systems. Cambridge University Press.Google Scholar
Maxey, M.R. 1987 The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech. 174, 441465.Google Scholar
Miloh, T. 1977 Hydrodynamics of deformable contiguous spherical shapes in an incompressible inviscid fluid. J. Engng Maths 11 (4), 349372.Google Scholar
Mininni, P.D., Alexakis, A. & Pouquet, A. 2006 Large-scale flow effects, energy transfer, and self-similarity on turbulence. Phys. Rev. E 74 (1), 016303.10.1103/PhysRevE.74.016303CrossRefGoogle ScholarPubMed
de Motta, J.C.Brändle, Estivalezes, Jean-Luc, Climent, Éric & Vincent, Stéphane 2016 Local dissipation properties and collision dynamics in a sustained homogeneous turbulent suspension composed of finite size particles. Intl J. Multiphase Flow 85, 369379.10.1016/j.ijmultiphaseflow.2016.07.003CrossRefGoogle Scholar
Mukherjee, S., Safdari, A., Shardt, O., Kenjereš, S. & Van den Akker, H.E.A. 2019 Droplet–turbulence interactions and quasi-equilibrium dynamics in turbulent emulsions. J. Fluid Mech. 878, 221276.10.1017/jfm.2019.654CrossRefGoogle Scholar
Naso, A. & Prosperetti, A. 2010 The interaction between a solid particle and a turbulent flow. New J. Phys. 12 (3), 033040.10.1088/1367-2630/12/3/033040CrossRefGoogle Scholar
Ni, R. & Xia, K.-Q. 2013 Kolmogorov constants for the second-order structure function and the energy spectrum. Phys. Rev. E—Stat. Nonlinear Soft Matt. Phys. 87 (2), 023002.10.1103/PhysRevE.87.023002CrossRefGoogle ScholarPubMed
Ogawa, S., Umemura, A. & Oshima, N. 1980 On the equations of fully fluidized granular materials. Z. Angew. Math. Phys. 31, 483493.CrossRefGoogle Scholar
Ornstein, L.S. 1914 Accidental deviations of density and opalescence at the critical point of a single substance. Proc. Akad. Sci. 17, 793.Google Scholar
Orszag, S.A. 1973 Statistical theory of turbulence. In Fluid Dynamics, Les Houches (ed. R. Balian & J.L. Peube), pp. 237374. Gordon and Breach.Google Scholar
Percus, J.K. & Yevick, G.J. 1958 Analysis of classical statistical mechanics by means of collective coordinates. Phys. Rev. 110 (1), 1.10.1103/PhysRev.110.1CrossRefGoogle Scholar
Perlekar, P., Biferale, L., Sbragaglia, M., Srivastava, S. & Toschi, F. 2012 Droplet size distribution in homogeneous isotropic turbulence. Phys. Fluids 24 (6), 065101.10.1063/1.4719144CrossRefGoogle Scholar
Perrard, S., Rivière, A., Mostert, W. & Deike, L. 2021 Bubble deformation by a turbulent flow. J. Fluid Mech. 920, A15.10.1017/jfm.2021.379CrossRefGoogle Scholar
Pierson, J.-L. 2025 Inertial effects on the lubrication force between bubbles and drops. Unpublished manuscript.Google Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228 (16), 58385866.Google Scholar
Popinet, S. 2015 A quadtree-adaptive multigrid solver for the Serre–Green–Naghdi equations. J. Comput. Phys. 302, 336358.Google Scholar
Prince, M.J. & Blanch, H.W. 1990 Bubble coalescence and break‐up in air‐sparged bubble columns. AIChE J. 36 (10), 14851499.Google Scholar
Pumir, A. & Wilkinson, M. 2016 Collisional aggregation due to turbulence. Annu. Rev. Condens. Matter Phys. 7 (1), 141170.Google Scholar
Razizadeh, M., Mortazavi, S. & Shahin, H. 2018 Drop breakup and drop pair coalescence using front-tracking method in three dimensions. Acta Mechanica 229, 10211043.10.1007/s00707-017-1958-5CrossRefGoogle Scholar
Reade, W.C. & Collins, L.R. 2000 Effect of preferential concentration on turbulent collision rates. Phys. Fluids 12 (10), 25302540.Google Scholar
Reeks, M.W. 2021 The development and application of a kinetic theory for modeling dispersed particle flows. J. Fluids Engng 143 (8), 080803.10.1115/1.4051289CrossRefGoogle Scholar
Rider, W.J. & Kothe, D.B. 1998 Reconstructing volume tracking. J. Comput. Phys. 141 (2), 112152.10.1006/jcph.1998.5906CrossRefGoogle Scholar
Risso, F. & Fabre, J. 1998 Oscillations and breakup of a bubble immersed in a turbulent field. J. Fluid Mech. 372, 323355.Google Scholar
Riviere, A., Mostert, W., Perrard, S. & Deike, L. 2021 Sub-Hinze scale bubble production in turbulent bubble break-up. J. Fluid Mech. 917, A40.Google Scholar
Rosales, C. & Meneveau, C. 2005 Linear forcing in numerical simulations of isotropic turbulence: physical space implementations and convergence properties. Phys. Fluids 17 (9), 095106.10.1063/1.2047568CrossRefGoogle Scholar
Ross, S.L. 1971 Measurements and Models of the Dispersed Phase Mixing Process. University of Michigan.Google Scholar
Saffman, P.G.F. & Turner, J.S. 1956 On the collision of drops in turbulent clouds. J. Fluid Mech. 1 (1), 1630.10.1017/S0022112056000020CrossRefGoogle Scholar
Shinnar, R. 1961 On the behaviour of liquid dispersions in mixing vessels. J. Fluid Mech. 10 (2), 259275.10.1017/S0022112061000214CrossRefGoogle Scholar
Soligo, G., Roccon, A. & Soldati, A. 2019 Breakage, coalescence and size distribution of surfactant-laden droplets in turbulent flow. J. Fluid Mech. 881, 244282.10.1017/jfm.2019.772CrossRefGoogle Scholar
Sommerfeld, M. 2017 Numerical methods for dispersed multiphase flows. In Particles in Flows (ed. T. Bodnár, G. Galdi, Š. Nečasová), pp. 327396. Birkhäuser.Google Scholar
Sprow, F.B. 1967 Drop size distributions in strongly coalescing agitated liquid–liquid systems. AIChE J. 13 (5), 995998.10.1002/aic.690130530CrossRefGoogle Scholar
Sundaram, S. & Collins, L.R. 1997 Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations. J. Fluid Mech. 335, 75109.10.1017/S0022112096004454CrossRefGoogle Scholar
Cate, T., Andreas, D., Jos, J., Portela, L.M., Van Den, A. & Harry, E.A. 2004 Fully resolved simulations of colliding monodisperse spheres in forced isotropic turbulence. J. Fluid Mech. 519, 233271.10.1017/S0022112004001326CrossRefGoogle Scholar
Tobin, T., Muralidhar, R., Wright, H. & Ramkrishna, D. 1990 Determination of coalescence frequencies in liquid—liquid dispersions: effect of drop size dependence. Chem. Engng Sci. 45 (12), 34913504.10.1016/0009-2509(90)87154-KCrossRefGoogle Scholar
Tomar, G., Fuster, D., Zaleski, S. & Popinet, S. 2010 Multiscale simulations of primary atomization. Comput. Fluids 39 (10), 18641874.10.1016/j.compfluid.2010.06.018CrossRefGoogle Scholar
Trummler, T., Begemann, A., Trautner, E. & Klein, M. 2022 Numerical investigation of the segregation of turbulent emulsions. Phys. Fluids 34 (11), 113324.Google Scholar
Tsao, H.-K. & Koch, D.L. 1994 Collisions of slightly deformable, high Reynolds number bubbles with short-range repulsive forces. Phys. Fluids 6 (8), 25912605.10.1063/1.868149CrossRefGoogle Scholar
Uhlmann, M. & Chouippe, A. 2017 Clustering and preferential concentration of finite-size particles in forced homogeneous-isotropic turbulence. J. Fluid Mech. 812, 9911023.Google Scholar
Wang, L.-P., Ayala, O. & Xue, Y. 2005 Reconciling the cylindrical formulation with the spherical formulation in the kinematic descriptions of collision kernel. Phys. Fluids 17 (6), 067103.10.1063/1.1928647CrossRefGoogle Scholar
Wang, L.-P., Wexler, A.S. & Zhou, Y. 1998 a On the collision rate of small particles in isotropic turbulence. I. Zero-inertia case. Phys. Fluids 10 (1), 266276.Google Scholar
Wang, L.-P., Wexler, A.S. & Zhou, Y. 1998 b Statistical mechanical descriptions of turbulent coagulation. Phys. Fluids 10 (10), 26472651.Google Scholar
Wang, L.-P., Wexler, A.S. & Zhou, Y. 2000 Statistical mechanical description and modelling of turbulent collision of inertial particles. J. Fluid Mech. 415, 117153.10.1017/S0022112000008661CrossRefGoogle Scholar
Weatherley, L.R. 2020 Intensification of Liquid–Liquid Processes. Cambridge University Press.10.1017/9781108355865CrossRefGoogle Scholar
Weymouth, G.D. & Yue, D.K.-P. 2010 Conservative volume-of-fluid method for free-surface simulations on Cartesian-grids. J. Comput. Phys. 229 (8), 28532865.10.1016/j.jcp.2009.12.018CrossRefGoogle Scholar
Yao, Y. & Capecelatro, J. 2021 Deagglomeration of cohesive particles by turbulence. J. Fluid Mech. 911, A10.Google Scholar
Yeo, K., Dong, S., Climent, E. & Maxey, M.R. 2010 Modulation of homogeneous turbulence seeded with finite size bubbles or particles. Intl J. Multiphase Flow 36 (3), 221233.10.1016/j.ijmultiphaseflow.2009.11.001CrossRefGoogle Scholar
Zaichik, L.I., Simonin, O. & Alipchenkov, V.M. 2003 Two statistical models for predicting collision rates of inertial particles in homogeneous isotropic turbulence. Phys. Fluids 15 (10), 29953005.10.1063/1.1608014CrossRefGoogle Scholar
Zaichik, L.I., Simonin, O. & Alipchenkov, V.M. 2010 Turbulent collision rates of arbitrary-density particles. Intl J. Heat Mass Transfer 53 (9-10), 16131620.Google Scholar
Zhou, Y., Wexler, A.S. & Wang, L.-P. 1998 On the collision rate of small particles in isotropic turbulence. II. Finite inertia case. Phys. Fluids 10 (5), 12061216.Google Scholar