Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T02:31:10.477Z Has data issue: false hasContentIssue false

Capillary surfaces in and around exotic cylinders with application to stability analysis

Published online by Cambridge University Press:  12 November 2019

Fei Zhang
Affiliation:
School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074, PR China
Xinping Zhou*
Affiliation:
School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074, PR China
*
Email address for correspondence: xpzhou08@hust.edu.cn

Abstract

A capillary surface in or around exotic cylinders cannot locate itself, since the configurations of the exotic cylinders with a variable radius permit an entire continuum of equilibrium menisci, all of which have the same potential energy. The ‘exotic’ property indicates that all the menisci have the smallest eigenvalues $\unicode[STIX]{x1D706}_{1}=0$ for the corresponding Sturm–Liouville problems without a volume constraint for stability analysis. Three types of exotic cylinders are addressed and the Sturm–Liouville problems with $\unicode[STIX]{x1D706}=0$ for stability analysis are solved numerically. Notably, the two-dimensional cases can be solved analytically. In the method of Slobozhanin & Alexander (Phys. Fluids, vol. 15, 2003, pp. 3532–3545), the stability of the meniscus is determined by comparing the boundary parameter $\unicode[STIX]{x1D712}_{1}$ and the critical value $\unicode[STIX]{x1D712}_{1}^{\ast }$, which is derived directly from the solution of the Sturm–Liouville problem with $\unicode[STIX]{x1D706}=0$. Results validate that the exotic cylinders have the boundary parameters $\unicode[STIX]{x1D712}_{1}=\unicode[STIX]{x1D712}_{1}^{\ast }$. Motivated by this observation, a new way to determine the critical value $\unicode[STIX]{x1D712}_{1}^{\ast }$ under pressure disturbances for stability analysis is proposed without solving the Sturm–Liouville problem with $\unicode[STIX]{x1D706}=0$.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, J. I. D. & Slobozhanin, L. A. 2004 A review of the stability of disconnected equilibrium capillary surfaces. Microgravity Sci. Technol. 15, 321.Google Scholar
Bhatnagar, R. & Finn, R. 2016 On the capillarity equation in two dimensions. J. Math. Fluid Mech. 18, 731738.Google Scholar
Bostwick, J. B. & Steen, P. H. 2015 Stability of constrained capillary surfaces. Annu. Rev. Fluid Mech. 47, 539568.Google Scholar
Callahan, M., Concus, P. & Finn, R. 1991 Energy minimizing capillary surfaces for exotic containers. In Computing Optimal Geometries (with accompanying video tape) (ed. Taylor, J. E.), AMS Selected Lectures in Mathematics, pp. 1315. American Mathematical Society.Google Scholar
Concus, P. 1968 Static menisci in a vertical right circular cylinder. J. Fluid Mech. 34, 481495.Google Scholar
Concus, P. & Finn, R. 1989 Instability of certain capillary surfaces. Manuscr. Math. 63, 209213.Google Scholar
Concus, P. & Finn, R. 1991 Exotic containers for capillary surfaces. J. Fluid Mech. 224, 383394.Google Scholar
Concus, P., Finn, R. & Weislogel, M. 1992 Drop-tower experiments for capillary surfaces in an exotic container. AIAA J. 30, 134137.Google Scholar
Concus, P., Finn, R. & Weislogel, M. 1999 Capillary surfaces in an exotic container: results from space experiments. J. Fluid Mech. 394, 119135.Google Scholar
Decker, E. L., Frank, B., Suo, Y. & Garoff, S. 1999 Physics of contact angle measurement. Colloids Surf. A 156, 177189.Google Scholar
Finn, R. 1988 Non uniqueness and uniqueness of capillary surfaces. Manuscr. Math. 61, 347372.Google Scholar
Finn, R. 2010 On Young’s paradox, and the attractions of immersed parallel plates. Phys. Fluids 22, 017103.Google Scholar
Gillette, R. D. & Dyson, D. C. 1972 Stability of axisymmetric liquid-fluid interfaces towards general disturbances. Chem. Engng J. 3, 196199.Google Scholar
Gulliver, R. & Hildebrandt, S. 1986 Boundary configurations spanning continua of minimal surfaces. Manuscr. Math. 54, 323347.Google Scholar
Hildebrand, R. E., Hildebrand, M. A. & Tallmadge, J. A. 1971 Effect of radius on static menisci heights on wires. Chem. Engng J. 2, 297300.Google Scholar
Huh, C. & Mason, S. G. 1974 The flotation of axisymmetric particles at horizontal liquid interfaces. J. Colloid Interface Sci. 47, 271289.Google Scholar
Huh, C. & Scriven, L. E. 1969 Shapes of axisymmetric fluid interfaces of unbounded extent. J. Colloid Interface Sci. 30, 323337.Google Scholar
Kravchenko, V. V. & Porter, R. M. 2010 Spectral parameter power series for Sturm–Liouville problems. Math. Meth. Appl. Sci. 33, 459468.Google Scholar
Lowry, B. J. & Steen, P. H. 1995 Capillary surfaces: stability from families of equilibria with application to the liquid bridge. Proc. R. Soc. Lond. A 449, 411439.Google Scholar
Maddocks, J. H. 1987 Stability and folds. Arch. Rat. Mech. Anal. 99, 301328.Google Scholar
Myshkis, A. D., Babskii, V. G., Kopachevskii, N. D., Slobozhanin, L. A., Tyuptsov, A. D. & Wadhwa, R. S. 1987 Stability of equilibrium states of a liquid. In Low-Gravity Fluid Mechanics, pp. 120218. Springer.Google Scholar
Peruzzo, P., Defina, A., Nepf, H. M. & Stocker, R. 2013 Capillary interception of floating particles by surface-piercing vegetation. Phys. Rev. Lett. 111, 164501.Google Scholar
Pesci, A. I., Goldstein, R. E., Alexander, G. P. & Moffatt, H. K. 2015 Instability of a Möbius strip minimal surface and a link with systolic geometry. Phys. Rev. Lett. 114, 127801.Google Scholar
Rapacchietta, A. V. & Neumann, A. W. 1977 Force and free-energy analyses of small particles at fluid interfaces: II. Spheres. J. Colloid Interface Sci. 59, 555567.Google Scholar
Slobozhanin, L. A. & Alexander, J. I. D. 2003 Stability diagrams for disconnected capillary surfaces. Phys. Fluids 15, 35323545.Google Scholar
Slobozhanin, L. A., Alexander, J. I. D. & Resnick, A. H. 1997 Bifurcation of the equilibrium states of a weightless liquid bridge. Phys. Fluids 9, 18931905.Google Scholar
Slobozhanin, L. A. & Tyuptsov, A. D. 1974 Characteristic stability parameter of the axisymmetric equilibrium surface of a capillary liquid. Fluid Dyn. 9, 563571.Google Scholar
Tyree, M. T. 2003 Plant hydraulics: the ascent of water. Nature 423, 923.Google Scholar
Wente, H. C. 1999 Stability analysis for exotic containers. Dyn. Contin. Discrete Impuls. Syst. 5, 151158.Google Scholar
Wente, H. C. 2011 Exotic capillary tubes. J. Math. Fluid Mech. 13, 355370.Google Scholar
White, D. A. & Tallmadge, J. A. 1965 Static menisci on the outside of cylinders. J. Fluid Mech. 23, 325335.Google Scholar
Zhang, F., Zhou, X. & Zhu, C. 2018 Effects of surface tension on a floating body in two dimensions. J. Fluid Mech. 847, 489519.Google Scholar