Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T05:34:13.248Z Has data issue: false hasContentIssue false

Azimuthal capillary waves on a hollow filament – the discrete and the continuous spectrum

Published online by Cambridge University Press:  25 November 2019

Palas Kumar Farsoiya
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology, Bombay, Powai400076, India
Anubhab Roy
Affiliation:
Department of Applied Mechanics, Indian Institute of Technology, Madras, Chennai600036, India
Ratul Dasgupta*
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology, Bombay, Powai400076, India
*
Email address for correspondence: dasgupta.ratul@iitb.ac.in

Abstract

We study the temporal spectrum of linearised, azimuthal, interfacial perturbations imposed on a cylindrical gaseous filament surrounded by immiscible, viscous, quiescent fluid in radially unbounded geometry. Linear stability analysis shows that the base state is stable to azimuthal perturbations of standing wave form. Normal mode analysis leads to a viscous dispersion relation and shows that in addition to the discrete spectrum, the problem also admits a continuous spectrum. For a given azimuthal Fourier mode and Laplace number, the discrete spectrum yields two eigenfunctions which decay exponentially to zero at large radii and thus cannot represent far field perturbations. In addition to these discrete modes, we find an uncountably infinite set of eigenmodes which decay algebraically to zero. The completeness theorem for perturbation vorticity may be expressed as a sum over the discrete modes and an integral over the continuous ones. We validate our normal mode results by solving the linearised, initial value problem (IVP). The initial perturbation is taken to be an interfacial, azimuthal Fourier mode with zero perturbation vorticity. It is shown that the expression for the time dependent amplitude of a capillary standing wave (in the Laplace domain, $s$) has poles and branch points on the complex $s$ plane. We show that the residue at the poles yields the discrete spectrum, while the contribution from either side of the branch cut provides the continuous spectrum contribution. The particular initial condition treated here in the IVP, has projections on the discrete as well as the continuous spectrum eigenmodes and thus both sets are excited initially. Consequently the time evolution of the standing wave amplitude and the perturbation vorticity field have the form of a sum over discrete exponential contributions and an integral over a continuous range of exponential terms. The solution to the IVP leads to explicit analytical expressions for the standing wave amplitude and the vorticity field in the fluid outside the filament. Linearised analytical results are validated using direct numerical simulations (DNS) conducted using a code developed in-house for solving the incompressible, Navier–Stokes equations with an interface. For small perturbation amplitude, analytical predictions show excellent agreement with DNS. Our analysis complements and extends earlier results on the discrete and the continuous spectrum for interfacial viscous, capillary waves on unbounded domain.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, vol. 55. Courier Corporation.Google Scholar
Bauer, H. F. 1984 Natural damped frequencies of an infinitely long column of immiscible viscous liquids. Z. Angew. Math. Mech. 64 (11), 475490.CrossRefGoogle Scholar
Bechtel, S. E., Cooper, J. A., Forest, M. G., Petersson, N. A., Reichard, D. L., Saleh, A. & Venkataramanan, V. 1995 A new model to determine dynamic surface tension and elongational viscosity using oscillating jet measurements. J. Fluid Mech. 293, 379403.CrossRefGoogle Scholar
Berger, S. A. 1988 Initial-value stability analysis of a liquid jet. SIAM J. Appl. Maths 48 (5), 973991.CrossRefGoogle Scholar
Bohr, N. 1909 Determination of the surface-tension of water by the method of jet-vibration. Phil. Trans. R. Soc. Lond. A 209, 281317.CrossRefGoogle Scholar
Brackbill, J. U., Kothe, D. B. & Zemach, C. 1992 A continuum method for modeling surface tension. J. Comput. Phys. 100 (2), 335354.CrossRefGoogle Scholar
Case, K. M. 1960 Stability of inviscid plane couette flow. Phys. Fluids 3 (2), 143148.CrossRefGoogle Scholar
Castro-Hernández, E., van Hoeve, W., Lohse, D. & Gordillo, J. M. 2011 Microbubble generation in a co-flow device operated in a new regime. Lab on a Chip 11 (12), 20232029.Google Scholar
Chandrasekhar, S 1981 Hydrodynamic and Hydromagnetic Stability. Courier Corporation.Google Scholar
Chorin, A. J. 1968 Numerical solution of the Navier–Stokes equations. Maths Comput. 22 (104), 745762.CrossRefGoogle Scholar
Cortelezzi, L. & Prosperetti, A. 1981 Small-amplitude waves on the surface of a layer of a viscous liquid. Q. Appl. Maths 38 (4), 375389.CrossRefGoogle Scholar
Deike, L., Popinet, S. & Melville, W. K. 2015 Capillary effects on wave breaking. J. Fluid Mech. 769, 541569.CrossRefGoogle Scholar
Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71 (3), 036601.CrossRefGoogle Scholar
Farsoiya, P. K., Mayya, Y. S. & Dasgupta, R. 2017 Axisymmetric viscous interfacial oscillations–theory and simulations. J. Fluid Mech. 826, 797818.CrossRefGoogle Scholar
Friedman, B. 1990 Principles and Techniques of Applied Mathematics. Courier Dover Publications.Google Scholar
Fyfe, D. E., Oran, E. S. & Fritts, M. J. 1988 Surface tension and viscosity with lagrangian hydrodynamics on a triangular mesh. J. Comput. Phys. 76 (2), 349384.CrossRefGoogle Scholar
García, F. J. & González, H. 2008 Normal-mode linear analysis and initial conditions of capillary jets. J. Fluid Mech. 602, 81117.CrossRefGoogle Scholar
Garstecki, P., Fuerstman, M. J., Stone, H. A. & Whitesides, G. M. 2006 Formation of droplets and bubbles in a microfluidic T-junction scaling and mechanism of break-up. Lab on a Chip 6 (3), 437446.Google Scholar
Gordillo, J. M., Gañán-Calvo, A. M. & Pérez-Saborid, M. 2001 Monodisperse microbubbling: absolute instabilities in coflowing gas–liquid jets. Phys. Fluids 13 (12), 38393842.CrossRefGoogle Scholar
Grosch, C. E. & Salwen, H. 1978 The continuous spectrum of the Orr–Sommerfeld equation. Part 1. The spectrum and the eigenfunctions. J. Fluid Mech. 87 (1), 3354.CrossRefGoogle Scholar
Hirt, C. W. & Nichols, B. D. 1981 Volume of fluid (vof) method for the dynamics of free boundaries. J. Comput. Phys. 39 (1), 201225.CrossRefGoogle Scholar
Jordinson, R. 1971 Spectrum of eigenvalues of the Orr–Sommerfeld equation for Blasius flow. Phys. Fluids 14 (11), 25352537.CrossRefGoogle Scholar
Kalland, K. M.2008 A Navier–Stokes solver for single-and two-phase flow. Master’s thesis, University of Oslo.Google Scholar
Kalliadasis, S. & Homsy, G. M. 2001 Stability of free-surface thin-film flows over topography. J. Fluid Mech. 448, 387410.CrossRefGoogle Scholar
Lamb, H. 1993 Hydrodynamics. Cambridge University Press.Google Scholar
Leal, L. G. 2007 Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes, vol. 7. Cambridge University Press.CrossRefGoogle Scholar
Liang, X., Deng, D. S., Nave, J.-C. & Johnson, S. G. 2011 Linear stability analysis of capillary instabilities for concentric cylindrical shells. J. Fluid Mech. 683, 235262.CrossRefGoogle Scholar
Lin, S.-P. 2003 Breakup of Liquid Sheets and Jets. Cambridge University Press.CrossRefGoogle Scholar
Lörstad, D. & Fuchs, L. 2004 High-order surface tension VOF-model for 3D bubble flows with high density ratio. J. Comput. Phys. 200 (1), 153176.CrossRefGoogle Scholar
Mack, L. M. 1976 A numerical study of the temporal eigenvalue spectrum of the Blasius boundary layer. J. Fluid Mech. 73 (3), 497520.CrossRefGoogle Scholar
Malan, L. C., Ling, Y., Scardovelli, R., Llor, A. & Zaleski, S. 2019 Detailed numerical simulations of pore competition in idealized micro-spall using the VOF method. Comput. Fluids 189, 6072.CrossRefGoogle Scholar
Mao, X. & Sherwin, S. 2011 Continuous spectra of the Batchelor vortex. J. Fluid Mech. 681, 123.CrossRefGoogle Scholar
MATLAB2018 MATLAB and Statistics Toolbox Release 2018b. Natick, Massachusetts: The MathWorks Inc.Google Scholar
Meister, B. J. & Scheele, G. F. 1967 Generalized solution of the Tomotika stability analysis for a cylindrical jet. AIChE J. 13 (4), 682688.CrossRefGoogle Scholar
Miles, J. W. 1968 The Cauchy-Poisson problem for a viscous liquid. J. Fluid Mech. 34 (2), 359370.CrossRefGoogle Scholar
Moin, P. 2010 Fundamentals of Engineering Numerical Analysis. Cambridge University Press.CrossRefGoogle Scholar
Moon, S., Shin, Y., Kwak, H., Yang, J., Lee, S.-B., Kim, S. & An, K. 2016 Experimental observation of Bohrs nonlinear fluidic surface oscillation. Sci. Rep. 6, 19805.Google Scholar
Netzel, D. A., Hoch, G. & Marx, T. I. 1964 Adsorption studies of surfactants at the liquid-vapor interface: apparatus and method for rapidly determining the dynamic surface tension. J. Colloid Sci. 19 (9), 774785.Google Scholar
Parnes, R. 1972 Complex zeros of the modified Bessel function K n(Z). Maths Comput. 26, 949953.Google Scholar
Parthasarathy, R. N. & Chiang, K.-M. 1998 Temporal instability of gas jets injected in viscous liquids to three-dimensional disturbances. Phys. Fluids 10 (8), 21052107.CrossRefGoogle Scholar
Patankar, S. 1980 Numerical Heat Transfer and Fluid Flow. CRC Press.Google Scholar
Patankar, S., Farsoiya, P. K. & Dasgupta, R. 2018 Faraday waves on a cylindrical fluid filament–generalised equation and simulations. J. Fluid Mech. 857, 80110.CrossRefGoogle Scholar
Pederson, P. O. 1907 On the surface-tension of liquids investigated by the method of jet vibration. Proc. R. Soc. Lond. A 80 (535), 2627.CrossRefGoogle Scholar
Plateau, J. A. F. 1873 Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires, vol. 2. Gauthier-Villars.Google Scholar
Prosperetti, A. 1976 Viscous effects on small-amplitude surface waves. Phys. Fluids 19 (2), 195203.CrossRefGoogle Scholar
Prosperetti, A. 1980a Free oscillations of drops and bubbles: the initial-value problem. J. Fluid Mech. 100 (2), 333347.CrossRefGoogle Scholar
Prosperetti, A. 1980b Normal-mode analysis for the oscillations of a viscous-liquid drop in an immiscible liquid. J. Méc. 19 (1), 149182.Google Scholar
Prosperetti, A. 1981 Motion of two superposed viscous fluids. Phys. Fluids 24 (7), 12171223.CrossRefGoogle Scholar
Prosperetti, A. 2011 Advanced Mathematics for Applications. Cambridge University Press.Google Scholar
Prosperetti, A. & Cortelezzi, L. 1982 Small-amplitude waves produced by a submerged vorticity distribution on the surface of a viscous liquid. Phys. Fluids 25 (12), 21882192.CrossRefGoogle Scholar
Puckett, E. G., Almgren, A. S., Bell, J. B., Marcus, D. L. & Rider, W. J. 1997 A high-order projection method for tracking fluid interfaces in variable density incompressible flows. J. Comput. Phys. 130 (2), 269282.CrossRefGoogle Scholar
Rayleigh, Lord 1878 On the instability of jets. Proc. Lond. Math. Soc. 1 (1), 413.CrossRefGoogle Scholar
Rayleigh, Lord 1879 On the capillary phenomena of jets. Proc. R. Soc. Lond. 29 (196–199), 7197.Google Scholar
Rayleigh, Lord 1889 On the tension of recently formed liquid surfaces. Proc. R. Soc. Lond. 47, 281287.Google Scholar
Rayleigh, Lord 1892a On the instability of cylindrical fluid surfaces. Phil. Mag. 34 (5), 177180.CrossRefGoogle Scholar
Rayleigh, Lord 1892b Xvi. On the instability of a cylinder of viscous liquid under capillary force. Lond. Edin. Dublin Phil. Mag. J. Sci. 34 (207), 145154.CrossRefGoogle Scholar
Ronay, M. 1978 Determination of the dynamic surface tension of liquids from the instability of excited capillary jets and from the oscillation frequency of drops issued from such jets. Proc. R. Soc. Lond. A 361 (1705), 181206.CrossRefGoogle Scholar
Roy, A. & Subramanian, G. 2014a An inviscid modal interpretation of the lift-upeffect. J. Fluid Mech. 757, 82113.CrossRefGoogle Scholar
Roy, A. & Subramanian, G. 2014b Linearized oscillations of a vortex column: the singular eigenfunctions. J. Fluid Mech. 741, 404460.CrossRefGoogle Scholar
Salwen, H. & Grosch, C. E. 1981 The continuous spectrum of the Orr–Sommerfeld equation. Part 2. Eigenfunction expansions. J. Fluid Mech. 104, 445465.CrossRefGoogle Scholar
Scardovelli, R. & Zaleski, S. 2000 Analytical relations connecting linear interfaces and volume fractions in rectangular grids. J. Comput. Phys. 164 (1), 228237.CrossRefGoogle Scholar
Shu, C. 2009 High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51 (1), 82126.Google Scholar
Singh, M., Farsoiya, P. K. & Dasgupta, R. 2019 Test cases for comparison of two interfacial solvers. Intl J. Multiphase Flow 115, 7592.CrossRefGoogle Scholar
Stone, H. A. & Brenner, M. P. 1996 Note on the capillary thread instability for fluids of equal viscosities. J. Fluid Mech. 318, 373374.CrossRefGoogle Scholar
Tomotika, S. 1935 On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid. Proc. R. Soc. Lond. A 150 (870), 322337.Google Scholar
Tryggvason, G., Scardovelli, R. & Zaleski, S. 2011 Direct Numerical Simulations of Gas–Liquid Multiphase Flows. Cambridge University Press.CrossRefGoogle Scholar
Van Hoeve, W., Dollet, B., Gordillo, J. M., Versluis, M., Van Wijngaarden, L. & Lohse, D. 2011 Bubble size prediction in co-flowing streams. Europhys. Lett. 94 (6), 64001.CrossRefGoogle Scholar
Van Hoeve, W., Gekle, S., Snoeijer, J. H., Versluis, M., Brenner, M. P. & Lohse, D. 2010 Breakup of diminutive Rayleigh jets. Phys. Fluids 22 (12), 122003.CrossRefGoogle Scholar
Wolfram Research, Inc.2016 Mathematica version 11. https://www.wolfram.com/mathematica/.Google Scholar
Supplementary material: File

Farsoiya et al. supplementary material

Farsoiya et al. supplementary material

Download Farsoiya et al. supplementary material(File)
File 8.9 MB