Hostname: page-component-54dcc4c588-tfzs5 Total loading time: 0 Render date: 2025-09-23T20:23:42.266Z Has data issue: false hasContentIssue false

Aeroacoustics of vortex–wedge interaction

Published online by Cambridge University Press:  22 September 2025

Marios I. Spiropoulos*
Affiliation:
Institute PPRIME UPR, 3346, CNRS – University of Poitiers – ENSMA, 86022 Poitiers, France
Florent Margnat
Affiliation:
Institute PPRIME UPR, 3346, CNRS – University of Poitiers – ENSMA, 86022 Poitiers, France
Vincent Valeau
Affiliation:
Institute PPRIME UPR, 3346, CNRS – University of Poitiers – ENSMA, 86022 Poitiers, France
Peter Jordan
Affiliation:
Institute PPRIME UPR, 3346, CNRS – University of Poitiers – ENSMA, 86022 Poitiers, France
*
Corresponding author: Marios I. Spiropoulos; Email: marios-ioannis.spiropoulos@ensma.fr

Abstract

We consider the vortex–wedge interaction problem, taking as a departure point Howe’s model of a point vortex interacting with a semi-infinite half-plane, where the vortex path is influenced by its image and a closed-form analytical solution is obtained for the sound field. We generalise Howe’s model to consider wedges of arbitrary angles and explore the influence of vortex circulation, distance from the edge and the wedge half-angle. The effect of wedge angle on sound emission involves a reduced amplitude of the latter as the former is increased. An extension of the model is proposed to account for convection effects by a non-zero ambient flow. We identify a non-dimensional parameter that characterises the vortex kinematics close to the edge and the associated acoustic effect: high and low values of the parameter correspond, respectively, to high- and low-amplitude sound emission of high and low frequency.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abreu, L.I., Tanarro, A., Cavalieri, A.V.G., Schlatter, P., Vinuesa, R., Hanifi, A.Henningson, D.S. 2021 Spanwise-coherent hydrodynamic waves around flat plates and airfoils. J. Fluid Mech. 927, A1.CrossRefGoogle Scholar
Amiet, R.K. 1975 Acoustic radiation from an airfoil in a turbulent stream. J. Sound Vib. 41 (4), 407420.10.1016/S0022-460X(75)80105-2CrossRefGoogle Scholar
Avallone, F., Pröbsting, S. & Ragni, D. 2016 Three-dimensional flow field over a trailing-edge serration and implications on broadband noise. Phys. Fluids 28 (11), 117101.10.1063/1.4966633CrossRefGoogle Scholar
Avallone, F., van der Velden, W.C.P., Ragni, D. & Casalino, D. 2018 Noise reduction mechanisms of sawtooth and combed-sawtooth trailing-edge serrations. J. Fluid Mech. 848, 560591.10.1017/jfm.2018.377CrossRefGoogle Scholar
Biot, M.A. & Tolstoy, I. 1957 Formulation of wave propagation in infinite media by normal coordinates with an application to diffraction. J. Acoust. Soc. Am. 29 (3), 381391.10.1121/1.1908899CrossRefGoogle Scholar
Cavalieri, A.V.G., Jordan, P., Wolf, W.R. & Gervais, Y. 2014 Scattering of wavepackets by a flat plate in the vicinity of a turbulent jet. J. Sound Vib. 333 (24), 65166531.CrossRefGoogle Scholar
Chang, C.-C. & Chen, T.-L. 1994 Acoustic emission by a vortex ring passing near a sharp wedge. Proc. R. Soc. Lond. A: Math. Phys. Sci. 445, 141155.Google Scholar
Chen, H., Yoas, Z.W., Jaworski, J.W. & Krane, M.H. 2022 Acoustic emission of a vortex ring near a porous edge. Part 1: theory. J. Fluid Mech. 941 , A28.10.1017/jfm.2022.313CrossRefGoogle Scholar
Colonius, T. & Lele, S.K. 2004 Computational aeroacoustics: progress on nonlinear problems of sound generation. Prog. Aerosp. Sci. 40 (6), 345416.10.1016/j.paerosci.2004.09.001CrossRefGoogle Scholar
Crighton, D.G. & Leppington, F.G. 1971 On the scattering of aerodynamic noise. J. Fluid Mech. 46 (3), 577597.10.1017/S0022112071000715CrossRefGoogle Scholar
Crighton, D.G. 1972 Radiation from vortex filament motion near a half plane. J. Fluid Mech. 51 (2), 357362.CrossRefGoogle Scholar
Crighton, D.G. & Leppington, F.G. 1970 Scattering of aerodynamic noise by a semi-infinite compliant plate. J. Fluid Mech. 43 (4), 721736.10.1017/S0022112070002690CrossRefGoogle Scholar
Curle, N. 1955 The influence of solid boundaries upon aerodynamic sound.. Proc. R. Soc. Lond. A: Math. Phys. Sci. 231, 505514.Google Scholar
Demange, S., Yuan, Z., Cavalieri, A.V.G., Hanifi, A. & Oberleithner, K. 2024 a Wavepackets driving trailing edge noise. Part II–resolvent-based model. In 30th AIAA/CEAS Aeroacoustics Conference (2024), pp. 3170.Google Scholar
Demange, S., Yuan, Z., Jekosch, S., Hanifi, A., Cavalieri, A.V.G., Sarradj, E., Kaiser, T.L. & Oberleithner, K. 2024 b Resolvent model for aeroacoustics of trailing edge noise. Theor. Comput. Fluid Dyn. 38, 163183.10.1007/s00162-024-00688-zCrossRefGoogle Scholar
Doolan, C.J. & Moreau, D.J. 2015 A review of airfoil trailing edge noise with some implications for wind turbines. Intl J. Aeroacoust. 14 (5-6), 811832.Google Scholar
Ffowcs Williams, J.E. & Hawkings, D.L. 1969 Sound generation by turbulence and surfaces in arbitrary motion. Phil. Trans. R. Soc. Lond. A: Math. Phys. Sci. 321342.10.1098/rsta.1969.0031CrossRefGoogle Scholar
Ffowcs Williams, J.E. & Hall, L.H. 1970 Aerodynamic sound generation by turbulent flow in the vicinity of a scattering half plane. J. Fluid Mech. 40 (4), 657670.10.1017/S0022112070000368CrossRefGoogle Scholar
Guo, Y. 2011 Aircraft flap side edge noise modeling and prediction. In 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference), pp. 2731.Google Scholar
Hardin, J.C. 1980 Noise radiation from the side edges of flaps. AIAA J. 18 (5), 549552.10.2514/3.7668CrossRefGoogle Scholar
Howe, M.S. 1975 a Contributions to the theory of aerodynamic sound, with application to excess jet noise and the theory of the flute. J. Fluid Mech. 71 (4), 625673.10.1017/S0022112075002777CrossRefGoogle Scholar
Howe, M.S. 1975 b The generation of sound by aerodynamic sources in an inhomogeneous steady flow. J. Fluid Mech. 67 (3), 597610.10.1017/S0022112075000493CrossRefGoogle Scholar
Howe, M.S. 1998 Acoustics of Fluid-Structure Interactions. Cambridge University Press.10.1017/CBO9780511662898CrossRefGoogle Scholar
Howe, M.S. 2001 Edge-source acoustic green’s function for an airfoil of arbitrary chord, with application to trailing-edge noise. Q. J. Mech. Appl. Maths 54 (1), 139155.10.1093/qjmam/54.1.139CrossRefGoogle Scholar
Howe, M.S. 1978 A review of the theory of trailing edge noise. J. Sound Vib. 61 (3), 437465.10.1016/0022-460X(78)90391-7CrossRefGoogle Scholar
Howe, M.S. 2003 Theory of Vortex Sound. Cambridge University press.Google Scholar
Huber, J., Pont, G., Jordan, P. & Roger, M. 2024 Wavepacket modelling of jet-flap interaction noise: from laboratory to full-scale aircraft. Flow Turbul. Combust. 113 (3), 773802.10.1007/s10494-023-00519-xCrossRefGoogle Scholar
Jordan, P. & Colonius, T. 2013 Wave packets and turbulent jet noise. Annu. Rev. Fluid Mech. 45 (1), 173195.10.1146/annurev-fluid-011212-140756CrossRefGoogle Scholar
Jordan, P., Jaunet, V., Towne, A., Cavalieri, Aé V.G., Colonius, T., Schmidt, O. & Agarwal, A. 2018 Jet–flap interaction tones. J. Fluid Mech. 853, 333358.10.1017/jfm.2018.566CrossRefGoogle Scholar
Kambe, T., Minota, T. & Ikushima, Y. 1985 Acoustic wave emitted by a vortex ring passing near the edge of a half-plane. J. Fluid Mech. 155, 77103.10.1017/S0022112085001720CrossRefGoogle Scholar
Lee, S., Ayton, L., Bertagnolio, F., Moreau, S., Chong, T.P. & Joseph, P. 2021 Turbulent boundary layer trailing-edge noise: theory, computation, experiment, and application. Prog. Aerosp. Sci. 126, 100737.10.1016/j.paerosci.2021.100737CrossRefGoogle Scholar
Lighthill, M.J. 1952 On sound generated aerodynamically i. General theory. Proc. R. Soc. Lond. A: Math. Phys. Sci. 211, 564587.Google Scholar
Macdonald, H.M. 1915 A class of diffraction problems. Proc. Lond. Math. Soc. 2 (1), 410427.Google Scholar
Menounou, P. & Nikolaou, P. 2017 Analytical model for predicting edge diffraction in the time domain. J. Acoust. Soc. Am. 142 (6), 35803592.10.1121/1.5014051CrossRefGoogle ScholarPubMed
Menounou, P., Spiropoulos, M.I. & Nikolaou, P. 2023 Approximate time domain solution for studying infinite wedge diffraction, its parameters, and characteristics. J. Acoust. Soc. Am. 153 (2), 13991411.10.1121/10.0017151CrossRefGoogle ScholarPubMed
Moreau, D.J. & Doolan, C.J. 2013 Noise-reduction mechanism of a flat-plate serrated trailing edge. AIAA J. 51 (10), 25132522.10.2514/1.J052436CrossRefGoogle Scholar
Moreau, S. & Roger, M. 2009 Back-scattering correction and further extensions of Amiet’s trailing-edge noise model. Part II: application. J. Sound Vib. 323 (1), 397425.Google Scholar
Oberhettinger, F. 2012 Tables of Fourier Transforms and Fourier Transforms of Distributions. Springer Science & Business Media.Google Scholar
Powell, A. 1964 Theory of vortex sound. J. Acoust. Soc. Am. 36 (1), 177195.Google Scholar
Priddin, M., Baker, D.I., Ayton, L.J. & Peake, N. 2018 Vortex sound models: passive and active noise control. In 2018 AIAA/CEAS Aeroacoustics Conference, pp. 3298.Google Scholar
Prinja, R., Jordan, P. & Margnat, F. 2025 Experimentally informed, linear mean-field modelling of circular cylinder aeroacoustics. Theor. Comput. Fluid Dyn. 39 (2), 133.CrossRefGoogle Scholar
Roger, M. & Moreau, S. 2005 Back-scattering correction and further extensions of Amiet’s trailing-edge noise model. Part 1: theory. J. Sound Vib. 286 (3), 477506.10.1016/j.jsv.2004.10.054CrossRefGoogle Scholar
Roger, M., Moreau, S. & Kucukcoskun, K. 2016 On sound scattering by rigid edges and wedges in a flow, with applications to high-lift device aeroacoustics. J. Sound Vib. 362, 252275.10.1016/j.jsv.2015.10.004CrossRefGoogle Scholar
Sano, A., Abreu, L.I., Cavalieri, A.V.G. & Wolf, W.R. 2019 Trailing-edge noise from the scattering of spanwise-coherent structures. Phys. Rev. Fluids 4 (9), 094602.Google Scholar
Stoffel, A., Margnat, F., Prax, C. & Vanherpe, F. 2025 Whistling side-view mirrors: modelling ladder-type structure tonal noise from flow intermittency. J. Sound Vib. 601, 118919.10.1016/j.jsv.2024.118919CrossRefGoogle Scholar
Tiomkin, S. & Jaworski, J.W. 2024 Revisiting the frozen gust assumption through the aeroacoustic scattering of wavepackets by a semi-infinite plate. J. Sound Vib. 571, 117989.10.1016/j.jsv.2023.117989CrossRefGoogle Scholar
Wang, M. & Moin, P. 2000 Computation of trailing-edge flow and noise using large-Eddy simulation. AIAA J. 38 (12), 22012209.CrossRefGoogle Scholar
Yuan, Z., Demange, S., Jekosch, S., Sarradj, E., Oberleithner, K., Cavalieri, A.V.G.Hanifi, A. 2024 Wavepackets driving trailing edge noise. Part i–direct simulation and experiments. In 30th AIAA/CEAS Aeroacoustics Conference (2024), pp. 3123.Google Scholar
Supplementary material: File

Spiropoulos et al. supplementary material

Spiropoulos et al. supplementary material
Download Spiropoulos et al. supplementary material(File)
File 105.6 KB