Hostname: page-component-65f69f4695-6knnn Total loading time: 0 Render date: 2025-06-26T19:33:09.075Z Has data issue: false hasContentIssue false

3-D-geometry-triggered transition from monotonic to non-monotonic effects of wettability on multiphase displacements in homogeneous porous media

Published online by Cambridge University Press:  25 June 2025

Wenhai Lei
Affiliation:
Department of Engineering Mechanics and ASP, Tsinghua University, Beijing 100084, PR China Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm 100 44, Sweden
Wenbo Gong
Affiliation:
College of Safety and Ocean Engineering, China University of Petroleum, Beijing 102249, PR China
Xukang Lu
Affiliation:
Department of Engineering Mechanics and ASP, Tsinghua University, Beijing 100084, PR China
Yuankai Yang
Affiliation:
Institute of Fusion Energy and Nuclear Waste Management (IFN-2) - Nuclear Waste Management, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
Hai-en Yang
Affiliation:
Xi’an Changqing Chemical Industry Group Co., Ltd., Xi’an 710021, PR China
Moran Wang*
Affiliation:
Department of Engineering Mechanics and ASP, Tsinghua University, Beijing 100084, PR China
*
Corresponding author: Moran Wang, moralwang@jhu.edu, mrwang@tsinghua.edu.cn

Abstract

Previous studies claimed that the non-monotonic effects of wettability came mainly from the heterogeneity of geometries or flow conditions on multiphase displacements in porous media. For macroscopic homogeneous porous media, without permeability contrast or obvious preferential flow pathways, most pore-scale evidence showed a monotonic trend of the wettability effect. However, this work reports transitions from monotonic to non-monotonic wettability effects when the dimension of the model system rises from two-dimensional (2-D) to three-dimensional (3-D), validated by both the network modelling and the microfluidic experiments. The mechanisms linking the pore-scale events to macroscopic displacement patterns have been analysed through direct simulations. For 2-D porous media, the monotonic effect of wettability comes from the consistent transition pattern for the full range of capillary numbers $Ca$, where the capillary fingering mode transitions to the compact displacement mode as the contact angle $\theta$ decreases. Yet, it is indicated that the 3-D porous geometries, even though homogeneous without permeability contrast or obvious preferential flow pathways, introduce a different $Ca$$\theta$ phase diagram with new pore-scale events, such as the coupling of capillary fingering with snap-off during strong drainage, and frequent snap-off events during strong imbibition. These events depend strongly on geometric confinements and capillary numbers, leading to the non-monotonicity of wettability effects. Our findings provide new insights into the multiphase displacement dependent on wettability in various natural porous media and offer design principles for engineering artificial porous media to achieve desired immiscible displacement behaviours.

Information

Type
JFM Rapids
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bakhshian, S., Rabbani, H.S., Hosseini, S.A. & Shokri, N. 2020 New insights into complex interactions between heterogeneity and wettability influencing two-phase flow in porous media. Geophys. Res. Lett. 47 (14), e2020GL088187.10.1029/2020GL088187CrossRefGoogle Scholar
Blunt, M.J. 2017 Multiphase Flow in Permeable Media: A Pore-Scale Perspective. Cambridge University Press.Google Scholar
Chomsurin, C. & Werth, C.J. 2003 Analysis of pore-scale nonaqueous phase liquid dissolution in etched silicon pore networks. Water Resour. Res. 39 (9), 1265.10.1029/2002WR001643CrossRefGoogle Scholar
Cieplak, M. & Robbins, M.O. 1988 Dynamical transition in quasistatic fluid invasion in porous media. Phys. Rev. Lett. 60 (20), 20422045.10.1103/PhysRevLett.60.2042CrossRefGoogle ScholarPubMed
Cieplak, M. & Robbins, M.O. 1990 Influence of contact angle on quasistatic fluid invasion of porous media. Phys. Rev. B 41 (16), 1150811521.10.1103/PhysRevB.41.11508CrossRefGoogle ScholarPubMed
Dalton, L.E., Crandall, D. & Goodman, A. 2020 Characterizing the Evolution of Trapped scCO2 Curvature in Bentheimer and Nugget Sandstone Pore Geometry. Geofluids 2020 (1), 3016595.10.1155/2020/3016595CrossRefGoogle Scholar
Datta, S.S., Dupin, J.-B. & Weitz, D.A. 2014 Fluid breakup during simultaneous two-phase flow through a three-dimensional porous medium. Phys. Fluids 26 (6), 062004.10.1063/1.4884955CrossRefGoogle Scholar
Ferrari, A. & Lunati, I. 2013 Direct numerical simulations of interface dynamics to link capillary pressure and total surface energy. Adv. Water Resour. 57, 1931.10.1016/j.advwatres.2013.03.005CrossRefGoogle Scholar
Geistlinger, H., Golmohammadi, S., Zulfiqar, B., Schlueter, S., Segre, E. & Holtzman, R. 2024 The interplay between pore-scale heterogeneity, surface roughness, and wettability controls trapping in two-phase fluid displacement in porous media. Geophys. Res. Lett. 51 (1), e2023GL106197.10.1029/2023GL106197CrossRefGoogle Scholar
Gong, W., Liu, Y., Lei, W., Ju, Y. & Wang, M. 2023 Viscous coupling effect on hydraulic conductance in a square capillary tube. Adv. Water Resour. 182, 104568.10.1016/j.advwatres.2023.104568CrossRefGoogle Scholar
Hilfer, R., Armstrong, R.T., Berg, S., Georgiadis, A. & Ott, H. 2015 Capillary saturation and desaturation. Phys. Rev. E 92 (6), 063023.10.1103/PhysRevE.92.063023CrossRefGoogle Scholar
Holtzman, R. & Segre, E. 2015 Wettability stabilizes fluid invasion into porous media via nonlocal, cooperative pore filling. Phys. Rev. Lett. 115 (16), 164501.10.1103/PhysRevLett.115.164501CrossRefGoogle ScholarPubMed
Joekar-Niasar, V. & Hassanizadeh, S.M. 2012 Analysis of fundamentals of two-phase flow in porous media using dynamic pore-network models: a review. Crit. Rev. Environ. Sci. Tech. 42 (18), 18951976.10.1080/10643389.2011.574101CrossRefGoogle Scholar
Jung, M., Brinkmann, M., Seemann, R., Hiller, T., Sanchez de La Lama, M. & Herminghaus, S. 2016 Wettability controls slow immiscible displacement through local interfacial instabilities. Phys. Rev. Fluids 1 (7), 074202.10.1103/PhysRevFluids.1.074202CrossRefGoogle Scholar
Karadimitriou, N.K., Joekar-Niasar, V., Babaei, M. & Shore, C.A. 2016 Critical role of the immobile zone in non-fickian two-phase transport: a new paradigm. Environ. Sci. Technol. 50 (8), 43844392.10.1021/acs.est.5b05947CrossRefGoogle ScholarPubMed
Krevor, S., de Coninck, H., Gasda, S.E., Ghaleigh, N.S., de Gooyert, V., Hajibeygi, H., Juanes, R., Neufeld, J., Roberts, J.J. & Swennenhuis, F. 2023 Subsurface carbon dioxide and hydrogen storage for a sustainable energy future. Nat. Rev. Earth Environ. 4 (2), 102118.10.1038/s43017-022-00376-8CrossRefGoogle Scholar
Lei, W., Gong, W., Lu, X. & Wang, M. 2024 Fluid entrapment during forced imbibition in a multidepth microfluidic chip with complex porous geometry. J. Fluid Mech. 987, A3.10.1017/jfm.2024.358CrossRefGoogle Scholar
Lei, W., Gong, W. & Wang, M. 2023 a Wettability effect on displacement in disordered media under preferential flow conditions. J. Fluid Mech. 975, A33.10.1017/jfm.2023.879CrossRefGoogle Scholar
Lei, W., Lu, X., Gong, W. & Wang, M. 2023 b Triggering interfacial instabilities during forced imbibition by adjusting the aspect ratio in depth-variable microfluidic porous media. Proc. Natl Acad. Sci. USA 120 (50), e2310584120.10.1073/pnas.2310584120CrossRefGoogle ScholarPubMed
Lei, W., Liu, T., Xie, C., Yang, H., Wu, T. & Wang, M. 2020 Enhanced oil recovery mechanism and recovery performance of micro-gel particle suspensions by microfluidic experiments. Energy Sci. Engng 8 (4), 986998.10.1002/ese3.563CrossRefGoogle Scholar
Lei, W., Lu, X., Liu, F. & Wang, M. 2022 Non-monotonic wettability effects on displacement in heterogeneous porous media. J. Fluid Mech. 942, R5.10.1017/jfm.2022.386CrossRefGoogle Scholar
Lenormand, R., Touboul, E. & Zarcone, C. 1988 Numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech. 189 (189), 165187.10.1017/S0022112088000953CrossRefGoogle Scholar
Singh, K., Jung, M., Brinkmann, M. & Seemann, R. 2019 Capillary-dominated fluid displacement in porous media. Annu. Rev. Fluid Mech. 51 (1), 429449.10.1146/annurev-fluid-010518-040342CrossRefGoogle Scholar
Singh, K., Scholl, H., Brinkmann, M., Michiel, M.D., Scheel, M., Herminghaus, S. & Seemann, R. 2017 The role of local instabilities in fluid invasion into permeable media. Sci. Rep.-UK 7 (1), 444.10.1038/s41598-017-00191-yCrossRefGoogle ScholarPubMed
Stokes, J.P., Weitz, D.A., Gollub, J.P., Dougherty, A., Robbins, M.O., Chaikin, P.M. & Lindsay, H.M. 1986 Interfacial stability of immiscible displacement in a porous medium. Phys. Rev. Lett. 57 (14), 17181721.10.1103/PhysRevLett.57.1718CrossRefGoogle Scholar
Trojer, M., Szulczewski, M.L. & Juanes, R. 2015 Stabilizing fluid-fluid displacements in porous media through wettability alteration. Phys. Rev. Appl. 3 (5), 054008.10.1103/PhysRevApplied.3.054008CrossRefGoogle Scholar
Wang, Z., Pereira, J.-M., Sauret, E. & Gan, Y. 2023 Wettability impacts residual trapping of immiscible fluids during cyclic injection. J. Fluid Mech. 961, A19.10.1017/jfm.2023.222CrossRefGoogle Scholar
Yun, W., Ross, C.M., Roman, S. & Kovscek, A.R. 2017 Creation of a dual-porosity and dual-depth micromodel for the study of multiphase flow in complex porous media. Lab Chip 17 (8), 14621474.10.1039/C6LC01343KCrossRefGoogle Scholar
Zhao, B., MacMinn, C.W. & Juanes, R. 2016 Wettability control on multiphase flow in patterned microfluidics. Proc. Natl Acad. Sci. USA 113 (37), 1025110256.10.1073/pnas.1603387113CrossRefGoogle ScholarPubMed
Zulfiqar, B., Vogel, H., Ding, Y., Golmohammadi, S., Küchler, M., Reuter, D. & Geistlinger, H. 2020 The impact of wettability and surface roughness on fluid displacement and capillary trapping in 2-D and 3-D porous media: 2. combined effect of wettability, surface roughness, and pore space structure on trapping efficiency in sand packs and micromodels. Water Resour. Res. 56 (10), e2020WR027965.10.1029/2020WR027965CrossRefGoogle Scholar
Supplementary material: File

Lei et al. supplementary material

Lei et al. supplementary material
Download Lei et al. supplementary material(File)
File 2.3 MB