Published online by Cambridge University Press: 06 April 2009
In this paper, we examine the pricing of European call options on stocks that have variance rates that change randomly. We study continuous time diffusion processes for the stock return and the standard deviation parameter, and we find that one must use the stock and two options to form a riskless hedge. The riskless hedge does not lead to a unique option pricing function because the random standard deviation is not a traded security. One must appeal to an equilibrium asset pricing model to derive a unique option pricing function. In general, the option price depends on the risk premium associated with the random standard deviation. We find that the problem can be simplified by assuming that volatility risk can be diversified away and that changes in volatility are uncorrelated with the stock return. The resulting solution is an integral of the Black-Scholes formula and the distribution function for the variance of the stock price. We show that accurate option prices can be computed via Monte Carlo simulations and we apply the model to a set of actual prices.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.