Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T20:40:05.994Z Has data issue: false hasContentIssue false

Peripubertal soy isoflavone consumption leads to subclinical hypothyroidism in male Wistar rats

Published online by Cambridge University Press:  26 August 2022

Gonzalo Ogliari Dal Forno
Affiliation:
Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, Zip-Code 85040-080, Parana, Brazil
Isabela Medeiros Oliveira
Affiliation:
Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, Zip-Code 85040-080, Parana, Brazil
Mônica Degraf Cavallin
Affiliation:
Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, Zip-Code 85040-080, Parana, Brazil
Thalita Iaroczinski Alves Santos
Affiliation:
Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, Zip-Code 85040-080, Parana, Brazil
Hanan Khaled Sleiman
Affiliation:
Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, Zip-Code 85040-080, Parana, Brazil
Margarete Kimie Falbo
Affiliation:
Department of Veterinary Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, Zip-Code 85040-080, Parana, Brazil
Marco Aurélio Romano
Affiliation:
Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, Zip-Code 85040-080, Parana, Brazil
Renata Marino Romano*
Affiliation:
Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, Zip-Code 85040-080, Parana, Brazil
*
Address for correspondence: Renata Marino Romano, State University of Centro-Oeste (UNICENTRO), R. Simeão Camargo Varela de Sa, 03, Guarapuava, PR, CEP 85040-080, Brazil. Email: romano@unicentro.br

Abstract

Exposure to endocrine-disrupting chemicals during critical windows of development may lead to functional abnormalities in adulthood. Isoflavones are a flavonoid group of phytoestrogens that are recognized by their estrogenic activity and are highly abundant in soybean. Since the thyroid gland presents estrogen receptors and infants, toddlers and teenagers may consume isoflavones from soy-based infant formula and beverages as alternatives to animal milk, we propose to investigate the potential effects of relevant concentrations of soy isoflavones in the regulation of the hypothalamic–pituitary (HP) thyroid axis using peripubertal male rats as an experimental model. Thirty-two 23-day-old male rats were exposed to 0.5, 5, or 50 mg of soy isoflavones/kg from weaning to 60 days of age, when they were euthanized, and the tissues were collected to evaluate the mRNA expression of genes involved in the regulation of the HP thyroid axis and dosages of thyroid hormones (THs). Serum TSH concentrations were increased, while alterations were not observed in serum concentrations of triiodothyronine and thyroxine. Regarding mRNA gene expression, Mct-8 was increased in the hypothalamus, Mct-8, Thra1, and Thrb2 were decreased in the pituitary, and Nis and Pds were reduced in the thyroid. In the heart, Mct8 and Thrb2 were increased, and Thra1 was decreased. In the liver, Mct8, Thra1, and Thrb2 were decreased. These results suggest that the consumption of relevant doses of soy isoflavones during the peripubertal period in males may induce subclinical hypothyroidism, with alterations in the regulation of the HP thyroid axis, modulation of TH synthesis, and peripheral alterations in TH target organs.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press in association with International Society for Developmental Origins of Health and Disease

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lauretta, R, Sansone, A, Sansone, M, Romanelli, F, Appetecchia, M. Endocrine disrupting chemicals: effects on endocrine glands. Front Endocrinol (Lausanne). 2019; 10: 178.CrossRefGoogle ScholarPubMed
Prins, G, Patisaul, H, Belcher, S, Vandenberg, L. CLARITY-BPA academic laboratory studies identify consistent low-dose Bisphenol A effects on multiple organ systems. Basic Clin Pharmacol Toxicol [Internet]. 2019 [cited 2021 Sep 17]; 125 Suppl(Suppl 3): 1431. Available from: https://pubmed.ncbi.nlm.nih.gov/30207065/ CrossRefGoogle ScholarPubMed
Vandenberg, LN, Blumberg, B. Alternative approaches to dose–response modeling of toxicological endpoints for risk assessment: nonmonotonic dose responses for endocrine disruptors. Compr Toxicol. 2018; 1: 3958.CrossRefGoogle Scholar
Nesan, D, Kurrasch, DM. Gestational exposure to common endocrine disrupting chemicals and their impact on neurodevelopment and behavior. Annu Rev Physiol [Internet]. 2020 [cited 2021 Sep 17]; 82: 177202. Available from: https://pubmed.ncbi.nlm.nih.gov/31738670/ CrossRefGoogle ScholarPubMed
Santos-Silva, AP, Andrade, MN, Pereira-Rodrigues, P, et al. Frontiers in endocrine disruption: impacts of organotin on the hypothalamus-pituitary-thyroid axis. Mol Cell Endocrinol. 2018; 460: 246257.CrossRefGoogle ScholarPubMed
Yilmaz, B, Terekeci, H, Sandal, S, Kelestimur, F. Endocrine disrupting chemicals: exposure, effects on human health, mechanism of action, models for testing and strategies for prevention. Rev Endocr Metab Disord [Internet]. 2020; 21: 127147. Available from: https://doi.org/10.1007/s11154-019-09521-z CrossRefGoogle ScholarPubMed
Darbre, P. Overview of air pollution and endocrine disorders. Int J Gen Med [Internet]. 2018 [cited 2021 Sep 17]; 11: 191207. Available from: https://pubmed.ncbi.nlm.nih.gov/29872334/ CrossRefGoogle ScholarPubMed
Křížová, L, Dadáková, K, Kašparovská, J, Kašparovský, T. Isoflavones. Molecules. 2019; 24: 1076.CrossRefGoogle ScholarPubMed
Kurzer, MS, Xu, X. Dietary phytoestrogens. Annu Rev Nutr [Internet]. 1997 [cited 2021 Sep 17]; 17: 353381. Available from: https://pubmed.ncbi.nlm.nih.gov/9240932/ CrossRefGoogle ScholarPubMed
Friedman, M, Brandon, DL. Nutritional and health benefits of soy proteins†. J Agric Food Chem [Internet]. 2001 [cited 2021 Sep 17]; 49: 10691086. Available from: https://pubs.acs.org/doi/full/10.1021/jf0009246 CrossRefGoogle ScholarPubMed
Chen, L-R, Chen, K-H. Utilization of isoflavones in soybeans for women with menopausal syndrome: an overview. Int J Mol Sci. 2021; 22, 3212 [Internet] 2021 [cited 2021 Sep 17];22(6):3212. Available from: https://www.mdpi.com/1422-0067/22/6/3212/htm CrossRefGoogle ScholarPubMed
Sridevi, V, Naveen, P, Karnam, V, Reddy, P, Arifullah, M. Beneficiary and adverse effects of phytoestrogens: a potential constituent of plant-based diet. Curr Pharm Des [Internet]. 2021 [cited 2021 Sep 21]; 27: 802815. Available from: https://pubmed.ncbi.nlm.nih.gov/32942973/ CrossRefGoogle ScholarPubMed
Kiess, W, Häussler, G, Vogel, M. Endocrine-disrupting chemicals and child health. Best Pract Res Clin Endocrinol Metab. 2021; 35: 101516.Google ScholarPubMed
Franke, A, Custer, L, Tanaka, Y. Isoflavones in human breast milk and other biological fluids. Am J Clin Nutr [Internet]. 1998 [cited 2021 Sep 17]; 68(6 Suppl). Available from: https://pubmed.ncbi.nlm.nih.gov/9848518/ Google ScholarPubMed
Chin, KY, Pang, KL. Skeletal effects of early-life exposure to soy isoflavones—A review of evidence from rodent models. Front Pediatr. 2020; 8: 563.CrossRefGoogle ScholarPubMed
Sethi, S, Tyagi, SK, Anurag, RK. Plant-based milk alternatives an emerging segment of functional beverages: a review. J Food Sci Technol [Internet]. 2016 [cited 2021 Sep 21]; 53: 3408. Available from: /pmc/articles/PMC5069255/ CrossRefGoogle ScholarPubMed
Gruber, CJ, Tschugguel, W, Schneeberger, C, Huber, JC. Production and actions of estrogens. The New England Journal of Medicine. [Internet] 2009 [cited 2021 Sep 21]; 346: 340352. Available from: https://www.nejm.org/doi/full/10.1056/NEJMra000471 CrossRefGoogle Scholar
Fagerberg, L, Hallström, BM, Oksvold, P, et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics. 2014; 13: 397406.CrossRefGoogle ScholarPubMed
Chen, HJ, Walfish, PG. Effects of estradiol benzoate on thyroid-pituitary function in female rats. Endocrinology [Internet]. 1978 [cited 2021 Sep 21]; 103: 10231030. Available from: https://academic.oup.com/endo/article/103/4/1023/2618600 CrossRefGoogle ScholarPubMed
Tran, L, Hammuda, M, Wood, C, Xiao, CW. Soy extracts suppressed iodine uptake and stimulated the production of autoimmunogen in rat thyrocytes. Experimental Biology and Medicine (Maywood, N.J.) [Internet] 2013 [cited 2021 Sep 21]; 238: 623630. Available from: https://journals.sagepub.com/doi/10.1177/1535370213489488?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub++0pubmed CrossRefGoogle ScholarPubMed
Messina, M. Soy and health update: evaluation of the clinical and epidemiologic literature. Nutrients [Internet]. 2016 [cited 2021 Sep 17]; 8. Available from: https://pubmed.ncbi.nlm.nih.gov/27886135/ Google ScholarPubMed
Soundarrajan, M, Kopp, PA. Thyroid Hormone Biosynthesis and Physiology. In Thyroid Disease and Reproduction (ed. Eaton), 2019; pp. 117. Springer, Cham. https://doi.org/10.1007/978-3-319-99079-8_1 Google Scholar
Citterio, CE, Targovnik, HM, Arvan, P. The role of thyroglobulin in thyroid hormonogenesis. Nat Rev Endocrinol. 2019; 15: 323338.CrossRefGoogle ScholarPubMed
Romano, RM, Oliveira, JM de, Oliveira, VM de, et al. Could glyphosate and glyphosate-based herbicides be associated with increased thyroid diseases worldwide? Front Endocrinol (Lausanne). 2021; 262.Google ScholarPubMed
Visser, WE, Friesema, ECH, Jansen, J, Visser, TJ. Thyroid hormone transport in and out of cells. Trends Endocrinol Metab [Internet]. 2008; 19: 5056. Available from: http://www.sciencedirect.com/science/article/pii/S1043276008000052 CrossRefGoogle ScholarPubMed
Taylor, PN, Albrecht, D, Scholz, A, et al. Global epidemiology of hyperthyroidism and hypothyroidism. Nat Rev Endocrinol. 2018; 14: 301316.CrossRefGoogle ScholarPubMed
Kim, J, Gosnell, JE, Roman, SA. Geographic influences in the global rise of thyroid cancer. Nat Rev Endocrinol. 2020; 16: 1729.CrossRefGoogle ScholarPubMed
Calsolaro, V, Pasqualetti, G, Niccolai, F, Caraccio, N, Monzani, F. Thyroid disrupting chemicals. Int J Mol Sci. 2017; 18: 2583.CrossRefGoogle ScholarPubMed
Zoeller, RT. Endocrine disrupting chemicals and thyroid hormone action. Adv Pharmacol. 2021; 92: 401417.CrossRefGoogle ScholarPubMed
Oliveira, KJ, Chiamolera, MI, Giannocco, G, Pazos-Moura, CC, Ortiga-Carvalho, TM. Thyroid function disruptors: from nature to chemicals. J Mol Endocrinol. 2018; 1(aop): R1–R19.Google Scholar
Stoker, TE, Parks, LG, Gray, LE, Cooper, RL. Endocrine-disrupting chemicals: prepubertal exposures and effects on sexual maturation and thyroid function in the male rat. A focus on the EDSTAC recommendations. Endocrine Disrupter Screening and Testing Advisory Committee. Crit Rev Toxicol. 2000; 30: 197252.CrossRefGoogle Scholar
Korenbrot, CC, Huhtaniemi, IT, Weiner, RI. Preputial seperation as an external sign of pubertal development in the male rat. Biol Reprod. 1977; 17: 298303.CrossRefGoogle Scholar
Sengupta, P. The laboratory rat: Relating its age with human’s. Int J Prev Med [Internet]. 2013 [cited 2022 Apr 12]; 4: 624. Available from: /pmc/articles/PMC3733029/ Google ScholarPubMed
Chomczynski, P, Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem [Internet]. 1987 [cited 2021 Sep 10]; 162: 156159. Available from: https://pubmed.ncbi.nlm.nih.gov/2440339/ CrossRefGoogle ScholarPubMed
Livak, KJ, Schmittgen, TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods [Internet]. 2001; 25: 402408. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11846609 CrossRefGoogle ScholarPubMed
Medeiros de Oliveira, I, Degraf Cavallin, N, Elzita do Carmo Corre, D, et al. Proteomic profiles of thyroid gland and gene expression of the hypothalamic−pituitary−thyroid axis are modulated by exposure to AgNPs during prepubertal rat stages. Cite This Chem Res Toxicol [Internet]. 2020; 33: 17. Available from: https://doi.org/10.1021/acs.chemrestox.0c00250 Google Scholar
Matoso de Oliveira, V, Ivanski, F, Medeiros de Oliveira, I, et al. Acrylamide induces a thyroid allostasis–adaptive response in prepubertal exposed rats. Curr Res Toxicol [Internet]. 2020; Available from: http://www.sciencedirect.com/science/article/pii/S2666027X20300165 Google Scholar
Liu, J, Xu, T, Ma, L, Chang, W. Signal pathway of estrogen and estrogen receptor in the development of thyroid cancer. Front Oncol [Internet]. 2021 [cited 2021 Sep 24]; 11: 593479. Available from: /pmc/articles/PMC8113849/ CrossRefGoogle ScholarPubMed
Qin, L, Li, L, Jin, Q, et al. Estrogen receptor β activation stimulates the development of experimental autoimmune thyroiditis through up-regulation of Th17-type responses. Clin Immunol [Internet]. 2018 [cited 2021 Sep 24]; 190: 4152. Available from: https://pubmed.ncbi.nlm.nih.gov/29481981/ CrossRefGoogle ScholarPubMed
Nair, AB, Jacob, S. A simple practice guide for dose conversion between animals and human. J basic Clin Pharm [Internet]. 2016; 7: 2731. Available from: https://pubmed.ncbi.nlm.nih.gov/27057123 CrossRefGoogle ScholarPubMed
Setchell, KDR, Zimmer-Nechemias, L, Cai, J, Heubi, JE. Exposure of infants to phyto-oestrogens from soy-based infant formula. Lancet. 1997; 350: 2327.CrossRefGoogle ScholarPubMed
An, ES, Park, D, Ban, YH, et al. Effects of a soybean milk product on feto-neonatal development in rats. J Biomed Res. 2018; 32: 5157.Google Scholar
Roberts, D, Rao Veeramachaneni, DN, Schlaff, WD, Awoniyi, CA. Effects of chronic dietary exposure to genistein, a phytoestrogen, during various stages of development on reproductive hormones and spermatogenesis in rats. Endocrine. 2000; 13: 281286.CrossRefGoogle ScholarPubMed
Gosi, S, Garla, V. Subclinical Hypothyroidism. 2021 [cited 2021 Sep 24];203–24. Available from: https://pubmed.ncbi.nlm.nih.gov/30725655/ Google Scholar
Salerno, M, Capalbo, D, Cerbone, M, De Luca, F. Subclinical hypothyroidism in childhood - current knowledge and open issues. Nat Rev Endocrinol [Internet]. 2016 [cited 2021 Sep 24]; 12: 734746. Available from: https://pubmed.ncbi.nlm.nih.gov/27364598/ CrossRefGoogle ScholarPubMed
Salerno, M, Improda, N, Capalbo, D. MANAGEMENT OF ENDOCRINE DISEASE Subclinical hypothyroidism in children. Eur J Endocrinol [Internet]. 2020 [cited 2021 Sep 24]; 183: R1328. Available from: https://pubmed.ncbi.nlm.nih.gov/32580145/ CrossRefGoogle ScholarPubMed
Biondi, B, Cappola, A, Cooper, D. Subclinical hypothyroidism: a review. JAMA [Internet]. 2019 [cited 2021 Sep 24]; 322: 153160. Available from: https://pubmed.ncbi.nlm.nih.gov/31287527/ CrossRefGoogle ScholarPubMed
Kopp, P. The TSH receptor and its role in thyroid disease. Cell Mol Life Sci [Internet]. 2001 [cited 2021 Sep 27]; 58: 13011322. Available from: https://pubmed.ncbi.nlm.nih.gov/11577986/ CrossRefGoogle ScholarPubMed
Kogai, T, Brent, GA. The sodium iodide symporter (NIS): regulation and approaches to targeting for cancer therapeutics. Pharmacol Ther [Internet]. 2012 [cited 2021 Sep 24]; 135: 355. Available from: /pmc/articles/PMC3408573/ CrossRefGoogle ScholarPubMed
Bizhanova, A, Kopp, P. The sodium-iodide symporter NIS and pendrin in iodide homeostasis of the thyroid. Endocrinology [Internet]. 2009 [cited 2021 Sep 27]; 150: 1084. Available from: /pmc/articles/PMC2654752/ CrossRefGoogle ScholarPubMed
Rozenfeld, J, Efrati, E, Adler, L, et al. Transcriptional Regulation of the Pendrin Gene. Cell Physiol Biochem [Internet]. 2011 [cited 2021 Sep 27]; 28: 385. Available from: /pmc/articles/PMC3709172/ CrossRefGoogle ScholarPubMed
De la Vieja, A, Santisteban, P. Role of iodide metabolism in physiology and cancer. Endocr Relat Cancer [Internet]. 2018 [cited 2021 Sep 27]; 25: R22545. Available from: https://pubmed.ncbi.nlm.nih.gov/29437784/ CrossRefGoogle ScholarPubMed
Bargi-Souza, P, Goulart-Silva, F, Nunes, MT. Novel aspects of T 3 actions on GH and TSH synthesis and secretion: physiological implications. J Mol Endocrinol [Internet]. 2017 [cited 2021 Sep 27]; 59: R16778. Available from: https://pubmed.ncbi.nlm.nih.gov/28951438/ CrossRefGoogle ScholarPubMed
Bianco, AC, Dumitrescu, A, Gereben, B, et al. Paradigms of dynamic control of thyroid hormone signaling. Endocr Rev [Internet]. 2019 [cited 2021 Sep 27]; 40: 10001047. Available from: https://pubmed.ncbi.nlm.nih.gov/31033998/ CrossRefGoogle ScholarPubMed
Sasaki, S, Matsushita, A, Kuroda, G, Nakamura, HM, Oki, Y, Suda, T. The mechanism of negative transcriptional regulation by thyroid hormone: lessons from the thyrotropin β subunit gene. Vitam Horm. 2018; 106: 97127.CrossRefGoogle ScholarPubMed
Sadow, PM, Koo, E, Chassande, O, et al. Thyroid hormone receptor-specific interactions with steroid receptor coactivator-1 in the pituitary. Mol Endocrinol [Internet]. 2003 [cited 2021 Sep 27]; 17: 882894. Available from: https://academic.oup.com/mend/article/17/5/882/2747418 CrossRefGoogle ScholarPubMed
Matsui, K, Oda, K, Mizuta, S, et al. Mediator subunit MED1 is a T3-dependent and T3-independent coactivator on the thyrotropin β gene promoter. Biochem Biophys Res Commun [Internet]. 2013 [cited 2021 Sep 27]; 440: 184189. Available from: https://pubmed.ncbi.nlm.nih.gov/24055033/ CrossRefGoogle ScholarPubMed
Hirahara, N, Nakamura, HM, Sasaki, S, et al. Liganded T3 receptor β2 inhibits the positive feedback autoregulation of the gene for GATA2, a transcription factor critical for thyrotropin production. PLoS One [Internet]. 2020 [cited 2021 Sep 27]; 15. Available from: /pmc/articles/PMC6961892/ Google ScholarPubMed
Klein, JR. Dynamic interactions between the immune system and the neuroendocrine system in health and disease. Front Endocrinol (Lausanne). 2021; 278.Google ScholarPubMed
Duthoit, C, Estienne, V, Delom, F, et al. Production of immunoreactive thyroglobulin C-terminal fragments during thyroid hormone synthesis. Endocrinology [Internet]. 2000 [cited 2021 Sep 28]; 141: 25182525. Available from: https://academic.oup.com/endo/article/141/7/2518/2988727 CrossRefGoogle ScholarPubMed
El Hassani, RA, Estienne, V, Blanchin, S, et al. Antigenicity and immunogenicity of the C-terminal peptide of human thyroglobulin. Peptides. 2004; 25: 10211029.CrossRefGoogle ScholarPubMed
Klein, J. Novel splicing of immune system thyroid stimulating hormone β-subunit-genetic regulation and biological importance. Front Endocrinol (Lausanne) [Internet]. 2019 [cited 2021 Sep 27]; 10. Available from: https://pubmed.ncbi.nlm.nih.gov/30804891/ Google ScholarPubMed
Liu, C, Miao, J, Zhao, Z, et al. Functional human TSHβ splice variant produced by plasma cell may be involved in the immunologic injury of thyroid in the patient with Hashimoto’s thyroiditis. Mol Cell Endocrinol [Internet]. 2015 [cited 2021 Sep 28]; 414: 132142. Available from: https://pubmed.ncbi.nlm.nih.gov/26170068/ CrossRefGoogle ScholarPubMed
Liu, C, Miao, J, Liu, X, et al. HPT axis-independent TSHβ splice variant regulates the synthesis of thyroid hormone in mice. Mol Med Rep [Internet]. 2019 [cited 2021 Sep 27]; 19: 45144522. Available from: http://www.spandidos-publications.com/10.3892/mmr.2019.10082/abstract Google ScholarPubMed
Cokkinos, D, Chryssanthopoulos, S. Thyroid hormones and cardiac remodeling. Heart Fail Rev [Internet]. 2016 [cited 2021 Oct 15]; 21: 365372. Available from: https://pubmed.ncbi.nlm.nih.gov/27138258/ CrossRefGoogle ScholarPubMed
Razvi, S, Jabbar, , Pingitore, A, et al. Thyroid hormones and cardiovascular function and diseases. J Am Coll Cardiol [Internet]. 2018 [cited 2021 Oct 15]; 71: 17811796. Available from: https://pubmed.ncbi.nlm.nih.gov/29673469/ CrossRefGoogle ScholarPubMed
Gloss, B, Trost, S, Bluhm, W, et al. Cardiac ion channel expression and contractile function in mice with deletion of thyroid hormone receptor alpha or beta. Endocrinology [Internet]. 2001 [cited 2021 Oct 15]; 142: 544550. Available from: https://pubmed.ncbi.nlm.nih.gov/11159823/ CrossRefGoogle ScholarPubMed
van Geest, F, Gunhanlar, N, Groeneweg, S, Visser, W. Monocarboxylate transporter 8 deficiency: from pathophysiological understanding to therapy development. Front Endocrinol (Lausanne) [Internet]. 2021 [cited 2021 Oct 15]; 12. Available from: https://pubmed.ncbi.nlm.nih.gov/34539576/ Google ScholarPubMed
Swanson, E, Gloss, B, Belke, D, Kaneshige, M, Cheng, S, Dillmann, WH. Cardiac expression and function of thyroid hormone receptor beta and its PV mutant. Endocrinology [Internet]. 2003 [cited 2021 Oct 15]; 144: 48204825. Available from: https://pubmed.ncbi.nlm.nih.gov/12959993/ CrossRefGoogle ScholarPubMed
Ortiga-Carvalho, TM, Sidhaye, AR, Wondisford, FE. Thyroid hormone receptors and resistance to thyroid hormone disorders. Nat Rev Endocrinol. 2014; 10: 582591.CrossRefGoogle ScholarPubMed
Jabbar, A, Pingitore, A, Pearce, SH, Zaman, A, Iervasi, G, Razvi, S. Thyroid hormones and cardiovascular disease. Nat Rev Cardiol. 2017; 14: 3955.CrossRefGoogle ScholarPubMed
Ritter, M, Amano, I, Hollenberg, A. Thyroid hormone signaling and the liver. Hepatology [Internet]. 2020 [cited 2021 Oct 15]; 72: 742752. Available from: https://pubmed.ncbi.nlm.nih.gov/32343421/ CrossRefGoogle ScholarPubMed
Davidson, NO, Powell, LM, Wallis, SC, Scott, J. Thyroid hormone modulates the introduction of a stop codon in rat liver apolipoprotein B messenger RNA. J Biol Chem. 1988; 263: 1348213485.CrossRefGoogle ScholarPubMed
Piantanida, E, Ippolito, S, Gallo, D, et al. The interplay between thyroid and liver: implications for clinical practice. J Endocrinol Invest [Internet]. 2020 [cited 2021 Oct 15]; 43: 885899. Available from: https://pubmed.ncbi.nlm.nih.gov/32166702/ CrossRefGoogle ScholarPubMed
Šošić-Jurjević, B, Lütjohann, D, Renko, K, et al. The isoflavones genistein and daidzein increase hepatic concentration of thyroid hormones and affect cholesterol metabolism in middle-aged male rats. J Steroid Biochem Mol Biol. 2019; 190: 110.CrossRefGoogle ScholarPubMed
Vandenberg, LN, Colborn, T, Hayes, TB, et al. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev. 2012; 33: 378455.CrossRefGoogle ScholarPubMed
Romano, RM, Oliveira, JM de, Oliveira, VM de, et al. Could glyphosate and glyphosate-based herbicides be associated with increased thyroid diseases worldwide? [Internet] Front Endocrinol (Lausanne). 2021 [cited 2021 May 30]; 12: 1. Available from: www.frontiersin.org Google ScholarPubMed
Chatzitomaris, A, Hoermann, R, Midgley, JE, et al. Thyroid allostasis-adaptive responses of thyrotropic feedback control to conditions of strain, stress, and developmental programming. Front Endocrinol. 2017; 8: 163.CrossRefGoogle ScholarPubMed