Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T22:05:49.827Z Has data issue: false hasContentIssue false

The use of sedimentation field flow fractionation and photon correlation spectroscopy in the characterization of casein micelles

Published online by Cambridge University Press:  16 October 2003

Punsandani Udabage
Affiliation:
Food Science Australia, Private Bag 16, Sneydes Road, Werribee, Victoria 3030, Australia
Ian R McKinnon
Affiliation:
School of Chemistry Monash University, PO Box 23, Monash University, Clayton, Victoria 3800, Australia
Mary Ann Augustin
Affiliation:
Food Science Australia, Private Bag 16, Sneydes Road, Werribee, Victoria 3030, Australia

Abstract

Sedimentation Field Flow Fractionation (SdFFF) was combined with Photon Correlation Spectroscopy (PCS), to characterize changes in the structure of the colloidal particles of reconstituted skim milk of diameter >50 nm (aggregates of casein and calcium phosphate known as casein micelles) with the changes in partitioning (with the addition of salt) of calcium (Ca), inorganic phosphate (Pi) and casein between the serum and colloidal phases of the milk. The number weighted particle size distributions are determined. These are well represented by a log-normal distribution. Methods are presented for estimating the relative contributions of scattering and absorbance to the SdFFF detector signal and for taking both into account when analysing SdFFF data. The values found for the effective density of the casein micelles were in good agreement with the literature and ranged from (1·06–1·08 g cm−3) according to the composition of micelles. The changes in the scattering intensity as determined by PCS correlated with the changes in the particle composition. Although the concentrations of colloidal calcium phosphate (CCP) (1·1–3·5 g/kg milk) and micellar casein (18·1–27·2 g/kg milk) varied considerably only small changes in the size distribution of particles >50 nm diameter were observed except for milk to which 30 mmol Pi+10 mmol Ca/kg milk had been added where the particle size distribution shows a swelling of the particles consistent with a lower than expected value for the particle density. These observations suggest that the micelles have the ability to both lose (depleted micelles) and accommodate (enriched micelles) more casein, calcium and inorganic phosphate in their interior, thus confirming the model of the micelles which postulates an open structure allowing freedom of movement of casein and small ions.

Type
Research Article
Copyright
© Proprietors of Journal of Dairy Research 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)