Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T10:26:34.735Z Has data issue: false hasContentIssue false

The neutrophil function and lymphocyte profile of milk from bovine mammary glands infected with Streptococcus dysgalactiae

Published online by Cambridge University Press:  29 June 2015

Maiara G Blagitz*
Affiliation:
Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof Dr Orlando Marques de Paiva, 87, Cidade Universitária, São Paulo 05508-270, Brazil
Fernando N Souza
Affiliation:
Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-010, Brazil
Camila F Batista
Affiliation:
Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof Dr Orlando Marques de Paiva, 87, Cidade Universitária, São Paulo 05508-270, Brazil
Luis Fernando F Azevedo
Affiliation:
Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof Dr Orlando Marques de Paiva, 87, Cidade Universitária, São Paulo 05508-270, Brazil
Nilson Roberti Benites
Affiliation:
Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil
Priscilla Anne Melville
Affiliation:
Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil
Soraia A Diniz
Affiliation:
Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-010, Brazil
Marcos X Silva
Affiliation:
Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-010, Brazil
João Paulo A Haddad
Affiliation:
Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-010, Brazil
Marcos Bryan Heinnemann
Affiliation:
Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil
Mônica M O P Cerqueira
Affiliation:
Departamento de Tecnologia e Inspeção de Produtos de Origem Animal, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-010, Brazil
Alice M M P Della Libera
Affiliation:
Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof Dr Orlando Marques de Paiva, 87, Cidade Universitária, São Paulo 05508-270, Brazil
*
*For correspondence; e-mail: magblagitz@uol.com.br

Abstract

Streptococcus dysgalactiae is a bacterium that accounts for a notable proportion of both clinical and subclinical intramammary infections (IMIs). Thus, the present study explores the function of milk neutrophils and the lymphocyte profile in mammary glands naturally infected with Streptococcus dysgalactiae. Here, we used 32 culture-negative control quarters from eight clinically healthy dairy cows with low somatic cell counts and 13 S. dysgalactiae-infected quarters from six dairy cows. Using flow cytometry, we evaluated the percentage of milk monocytes/macrophages and neutrophils, expression of CD62L, CD11b and CD44 by milk neutrophils, the levels of intracellular reactive oxygen species (ROS) production and phagocytosis of Staphylococcus aureus by milk neutrophils, and neutrophil viability. Furthermore, the percentages of B cell (CD21+) and T lymphocyte subsets (CD3+/CD4+/CD8; CD3+/CD8+/CD4; and CD3+/CD8/CD4), and the expression of CD25 by T milk lymphocytes (CD3+) and T CD4+ milk cells were also assessed by flow cytometry using monoclonal antibodies. The present study showed a higher SCC and percentage of milk neutrophils, and a decrease in the percentage of milk monocytes/macrophages from S. dysgalactiae-infected quarters when compared to uninfected ones. We also observed a higher expression of CD11b by milk neutrophils and a tendency toward a decrease in neutrophil apoptosis rate in S. dysgalactiae-infected quarters. In addition, the S. dysgalactiae-infected quarters had higher percentages of milk T cells (CD3+) and their subset CD3+CD8+CD4 cells. Overall, the present study provided new insights into S. dysgalactiae IMIs, including distinct lymphocyte profiles, and a tendency toward an inhibition of apoptosis in milk neutrophils.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahmsén, M, Persson, Y, Kanyima, BM & Bage, 2014 Prevalence of subclinical mastitis in dairy farms in urban and peri-urban areas of Kamala, Uganda. Tropical Animal Health and Production 46 99105CrossRefGoogle Scholar
Alnakip, ME, Quintela-Baluja, M, Böhme, K, Fernandez-No, I, Caamaño-Antelo, S, Calo-Mata, P & Barros-Velázquez, 2014 The immunology of mammary gland of dairy ruminants between healthy and inflammatory conditions. Journal of Veterinary Medicine 2014 659801Google Scholar
Bannerman, DD 2009 Pathogen-dependent induction of cytokines and other soluble inflammatory mediators during intramammary infections in dairy cows. Journal of Animal Science 87 1025CrossRefGoogle ScholarPubMed
Baumert, A, Bruckmaier, RM & Wellnitz, O 2009 Cell population, viability, and some key immunomodulatory molecules in different milk somatic cell samples in dairy cows. Journal of Dairy Research 76 356364CrossRefGoogle ScholarPubMed
Beecher, C, Daly, M, Ross, RP, Flynn, J, McCarthy, TV & Giblin, L 2012 Characterization of the bovine innate immune response in milk somatic cells following intramammary infection with Streptococcus dysgalactiae subspecies dysgalactiae. Journal of Dairy Science 95 57205729CrossRefGoogle ScholarPubMed
Blagitz, MG, Souza, FN, Santos, BP, Batista, CF, Parra, AC, Azevedo, LFF & Della Libera, AMMP 2013 Function of milk polymorphonuclear neutrophil in bovine mammary glands infected Corynebacterium bovis. Journal of Dairy Science 96 37503757CrossRefGoogle ScholarPubMed
Blagitz, MG, Souza, FN, Batista, F, Diniz, SA, Azevedo, LFF, Silva, MX, Haddad, JPA, Heinemann, MB, Cerqueira, MMOP & Della Libera, AMMP 2015 Flow cytometric analysis: interdependence of healthy and infected udders. Journal of Dairy Science 98 24012408CrossRefGoogle Scholar
Bolton, A, Song, X-M, Wilson, P, Fontaine, MC, Potter, AA & Perez-Casal, J 2004 Use of surface proteins GapC and Mig of Streptococcus dysgalactiae as potential protective antigens against bovine mastitis. Canadian Journal of Microbiology 50 423432CrossRefGoogle ScholarPubMed
Botrel, M-A, Haeni, M, Morignat, E, Sulpice, P, Madec, J-Y & Calavas, D 2010 Distribution and antimicrobial resistance of clinical and subclinical mastitis pathogens in dairy cows in Rhône-Alpes, France. Foodborne Pathogens and Disease 7 479487CrossRefGoogle ScholarPubMed
Boutet, P, Boulanger, D, Gillet, L, Vanderplasschen, A, Closset, R, Bureau, F & Lekeux, P 2004 Delayed neutrophil apoptosis in bovine subclinical mastitis. Journal of Dairy Science 87 41044114CrossRefGoogle ScholarPubMed
Calvinho, LF, Almeida, RA & Oliver, SP 1998 Potential virulence factors of Streptococcus dysgalactiae associated with bovine mastitis. Veterinary Microbiology 61 93110CrossRefGoogle ScholarPubMed
Diez-Fraile, A, Meyer, E, Paape, MJ & Burvenich, C 2003 Analysis of the selective mobilization of L-selectin and Mac-1 reservoirs in bovine neutrophils and eosinophils. Veterinary Research 34 5770CrossRefGoogle ScholarPubMed
Diez-Fraille, A, Mehrzad, J, Meyer, E, Duchateau, L & Burvenich, C 2004 Comparison of L-selectin and Mac-1 expression on blood and milk neutrophils during experimental Escherichia coli-induced mastitis in cows. American Journal of Veterinary Research 65 11641171CrossRefGoogle ScholarPubMed
Della Libera, AMMP, Souza, FN, Batista, CF, Santos, BP, Azevedo, LFF, Sanchez, EMR, Diniz, SA, Silva, MX, Haddad, JP & Blagitz, MG 2015 Effect of bovine leukemia virus infection on milk neutrophil function and the milk lymphocyte profile. Veterinary Research 46 2CrossRefGoogle ScholarPubMed
Djabri, B, Bareille, N, Beaudeau, F & Seegers, F 2002 Quarter milk somatic cell count in infected cows: a meta analysis. Veterinary Research 33 335357CrossRefGoogle ScholarPubMed
Dohoo, I, Smith, J, Andersen, S, Kelton, DF & Godden, S 2011 Diagnosing intramammary infections: evaluation of definitions based on a  single milk sample. Journal of Dairy Science 94 250261CrossRefGoogle ScholarPubMed
Dosogne, H, Vangroenweghe, F, Mehrzad, J, Massart-Leën, AM & Burvenich, C 2003 Differential leukocyte count method for bovine low somatic cell count milk. Journal of Dairy Science 86 828834CrossRefGoogle ScholarPubMed
Green, MJ, Green, LE, Schukken, YH, Bradley, AJ, Peeler, EJ, Barkema, HW, de Hass, Y, Collis, VJ & Medley, GF 2004 Somatic cell count distributions during lactation predict clinical mastitis. Journal of Dairy Science 87 12561264CrossRefGoogle ScholarPubMed
Gonen, E, Nedvtzki, S, Naor, D & Shpigel, NY 2008 CD44 is highly expressed on milk neutrophils in bovine mastitis and plays a role in their adhesion to matrix and mammary epithelium. Veterinary Research 39 29CrossRefGoogle Scholar
Hasui, M, Hirabayashi, Y & Kobayashi, Y 1989 Simultaneous measurement by flow cytometry of phagocytosis and hydrogen peroxide production of neutrophils in while blood. Journal of Immunology Methods 117 5358CrossRefGoogle Scholar
Koess, C & Hamann, J 2008 Detection of mastitis in the bovine mammary gland by flow cytometry at early stages. Journal of Dairy Research 75 225232CrossRefGoogle ScholarPubMed
Lee, CS, Wooding, FB & Kemp, P 1980 Identification, properties, and differential counts of cell populations using eletron microscopy of dry cows secretion, colostrum and milk from normal cows. Journal of Dairy Research 47 3950CrossRefGoogle Scholar
Leelahapongsathon, K, Schukken, YH & Suriyasathaporn, K 2014 Quarter, cow, and farm risk factors for intramammary infections with major pathogens relative to minor pathogens in Thai dairy cows. Tropical Animal Health and Production 46 10671078CrossRefGoogle ScholarPubMed
Leitner, G, Shoshani, E, Krifucks, O, Chaffer, M & Saran, A 2000 Milk leucocyte population patterns in bovine udder infection of different aetiology. Journal of Veterinary Medicine B: Infectious Disase and Veterinary Public Health 47 581589CrossRefGoogle ScholarPubMed
Leitner, G, Eligulashvily, R, Krifucks, O, Perl, S & Saran, A 2003 Immune cell differentiation in mammary gland tissues and milk of cows chronically infected with Staphylococcus aureus. Journal of Veterinary Medicine B: Infectious Disase and Veterinary Public Health 50 4552CrossRefGoogle ScholarPubMed
Jain, NC & Jasper, DE 1967 Viable cells in bovine milk. British Veterinary Journal 123 5763CrossRefGoogle Scholar
Lundberg, Ä, Nyman, A, Unnerstad, HE & Waller, P 2014 Prevalence of bacterial genotypes and outcome of bovine clinical mastitis due to Streptococcus dysgalactiae and Streptococcus uberis. ACTA Veterinaria Scandinavica 56 80CrossRefGoogle ScholarPubMed
Maslanka, T, Spodniewska, A, Barski, D, Jasiecka, A, Zuska-Prot, M, Ziólkowski, H, Markiewicz, W & Jaroszewski, JJ 2014 Prostaglandin E2 down-regulates the expression of CD25 on bovine T cells, and this effect is mediated through the EP4 receptor. Veterinary Immunology and Immunopathology 160 192200CrossRefGoogle Scholar
Merle, R, Schröder, A & Hamann, J 2007 Cell function in bovine mammary gland: a preliminary study on the interdependence of healthy and infected udder quarters. Journal of Dairy Research 74 174179CrossRefGoogle Scholar
Miller, RH, Paape, MJ & Fulton, LA 1991 Variation in milk somatic cells of heifers at first calving. Journal of Dairy Science 74 37823790CrossRefGoogle ScholarPubMed
Nagahata, H, Kawai, H, Higuchi, H, Kawai, K, Yayou, K & Chang, CJ 2011 Altered leukocyte responsiveness in dairy cows with naturally occurring chronic Staphylococcus aureus mastitis. Journal of Veterinary Medical Science 73 885894CrossRefGoogle ScholarPubMed
Osteras, O, Solverod, L & Reksen, O 2006 Milk culture results in a large Norwegian survey – Effect of season, parity, days in milk, resistance, and clustering. Journal of Dairy Science 89 10101023CrossRefGoogle Scholar
Paape, MJ, Liluis, E-M, Wiitanen, PA, Kontio, RH & Miller, RH 1996 Intramamary defense against infections induced by Escherichia coli in cows. American Journal of Veterinary Research 57 477482Google Scholar
Paape, MJ, Bannerman, DD, Zhao, X & Lee, JW 2003 The bovine neutrophil: structure and function in blood and milk. Veterinary Research 34 597627Google ScholarPubMed
Park, YH, Fox, LK, Hamiton, MJ & Davis, WC 1993 Suppression of proliferative response of BoCD4+ T lymphocytes by actived BoCD8+ T lymphocytes in the mammary gland of cows with Staphylococcus mastitis. Veterinary Immunology and Immunopathology 36 137151CrossRefGoogle Scholar
Piepers, S, De Vliegher, S, Demeyere, K, Lamrecht, BN, Kruif, A, Meyer, E & Opsomer, G 2009 Technical note: flow cytometric identification of bovine milk neutrophils and simultaneous quantification of their viability. Journal of Dairy Science 92 626631CrossRefGoogle ScholarPubMed
Rabe-Hesketh, S & Skrondal, A 2008 Multilevel and Longitudinal Modelling using Stata. 3rd ed. p. 562. Texas: StataCorp LPGoogle Scholar
Raemy, A, Meylan, M, Casati, S, Gaia, V, Berchtold, B, Boss, R, Wyder, A & Graber, HU 2013 Phenotypic and genotypic identification of streptococci and related bacteria isolated from bovine intramammary infections. ACTA Veterinaria Scandinavica 55 53CrossRefGoogle ScholarPubMed
Rainard, P & Riollet, C 2006 Innate immunity of the bovine mammary gland. Veterinary Research 37 369400CrossRefGoogle ScholarPubMed
Sarikaya, H, Prgomet, C, Pfaffl, MW & Bruckmaier, RM 2004 Differetiation of leukocytes in bovine milk. Milchwissenschaft 59 586589Google Scholar
Sarikaya, H, Werner-Misof, C, Atzkern, M & Bruckmaier, RM 2005 Distribution of leukocyte popuations, and milk composition, in milk fractions of healthy quarters in dairy cows. Journal of Dairy Research 72 486492CrossRefGoogle Scholar
Schepers, AJ, Lam, TJGM, Schukken, YH, Wilmink, JBM & Hanekamp, WJA 1997 Estimation of variance components for somatic cell counts to determine threshold for uninfected quarters. Journal of Dairy Science 80 18331840CrossRefGoogle ScholarPubMed
Schukken, YH, Grommers, FJ, Van Der Geer, D & Brand, A 1989 Incidence of clinical mastitis on farms with low somatic cell counts in bulk milk. Veterinary Record 125 6063CrossRefGoogle ScholarPubMed
Schukken, YH, Wilson, DJ, Welcome, F, Garrison-Tikofsky, L & Gonzales, RN 2003 Monitoring udder health and milk quality using somatic cell counts. Veterinary Research 34 579596CrossRefGoogle ScholarPubMed
Schukken, YH, Günther, J, Fitzpatrick, J, Fontaine, MC, Goetze, L, Holst, O, Leigh, J, Petzl, W, Schuberth, H-J, Sipka, A, Smith, DGE, Quesnell, R, Watts, J, Yancey, R, Zerbe, H, Gurjar, A, Zadoks, RN & Seyfert, H-M 2011 Host-response patterns of intramammary infections in dairy cows. Veterinary Immunology and Immunopathology 144 270289CrossRefGoogle ScholarPubMed
Schwarz, D, Diesterbeck, US, Failing, K, König, S, Brügemann, K, Zschöck, M, Wolter, W & Czerny, CP 2010 Somatic cell counts and bacteriological status in quarter foremilk samples of cows in Hesse, Germany – A longitudinal study. Journal of Dairy Science 93 57165728CrossRefGoogle ScholarPubMed
Schwarz, D, Diesterbeck, US, König, S, Brügemann, K, Schlez, K, Zschöck, M, Wolter, W & Czerny, C-P 2011 Flow cytometric differential cell counts in milk for the evaluation of inflammatory reactions in clinically healthy and subclinically infected bovine mammary glands. Journal of Dairy Science 94 50335044CrossRefGoogle ScholarPubMed
Sladek, Z, Rysanek, D & Faldyna, M 2002 Activation of phagocytes during initiation and resolution of mammary gland injury induced by lipopolysaccharide in heifers. Veterinary Research 33 191204CrossRefGoogle ScholarPubMed
Smits, E, Burvenich, C, Guidry, AJ & Massart-Leën, A 2000 Adhesion receptor CD11b/CD18 contributes to neutrophil diapedesis across the bovine blood-milk barrier. Veterinary Immunology and Immunopathology 73 255265CrossRefGoogle ScholarPubMed
Soltys, J & Quinn, MT 1999 Selective recruitment of T-cell subsets to the udder during staphylococcal and streptococcal mastitis: analysis of lymphocyte subsets and adhesion molecule expression. Infection and Immunity 67 62936302CrossRefGoogle Scholar
Song, X-M, Perez-Casal, J, Bolton, A & Potter, AA 2001 Surface-expressed Mig protein protects Streptococcus dysgalactiae against phagocytosis by bovine neutrophils. Infection and Immunity 69 60306037CrossRefGoogle ScholarPubMed
Sordillo, LM, Shafer-Weaver, H & DeRosa, D 1997 Immunobiology of the mammary gland. Journal of Dairy Science 80 18511865CrossRefGoogle ScholarPubMed
Souza, GN, Brito, JRF, Moreira, EC, Brito, MAVP & Silva, MVGB 2009 Variação da contagem de células somáticas em vacas leiteiras de acordo com patógenos da mastite. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 61 10151020CrossRefGoogle Scholar
Tassi, R, McNeiley, TN, Fitzpatrick, JL, Fontaie, MC, Reddick, D, Ramage, C, Lutton, M, Schukken, YH & Zadoks, RN 2013 Strain-specific pathogenecity of putative host-adapted and nonadapted strains of Streptococcus uberis in dairy cattle. Journal of Dairy Science 96 51295145CrossRefGoogle Scholar
Waters, WR, Rahner, TE, Palmer, MV, Cheng, D, Nonnecke, BJ & Whipple, DL 2003 Expression of L-selectin (CD62L), CD44, and CD25 on activated bovine T cells. Infection and Immunity 71 317326CrossRefGoogle ScholarPubMed
Whist, AC, Osteras, O & Solverod, L 2007 Streptococcus dysgalactiae isolates at calving and lactation performance within the same lactation. Journal of Dairy Science 90 766778CrossRefGoogle ScholarPubMed
Wyder, AB, Boss, R, Naskova, J, Kaufmann, T, Steiner, A & Graber, HU 2010 Streptococcus spp. and related bacteria: their identification and their pathogenic potential for chronic mastitis – a molecular approach. Research in Veterinary Science 91 349357CrossRefGoogle ScholarPubMed
Zadoks, RN & Fitzpatrick, JL 2009 Changing trends in mastitis. Irish Veterinary Journal 62 5970CrossRefGoogle ScholarPubMed