Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T21:03:04.009Z Has data issue: false hasContentIssue false

Kefir-isolated Lactococcus lactis subsp. lactis inhibits the cytotoxic effect of Clostridium difficile in vitro

Published online by Cambridge University Press:  10 December 2012

Patricia Araceli Bolla
Affiliation:
Cátedra de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata, Argentina Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CCT-CONICET, 47 y 116, La Plata, Argentina
Paula Carasi
Affiliation:
Cátedra de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata, Argentina
María de los Angeles Serradell*
Affiliation:
Cátedra de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata, Argentina
Graciela Liliana De Antoni
Affiliation:
Cátedra de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata, Argentina Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CCT-CONICET, 47 y 116, La Plata, Argentina
*
*For correspondence; e-mail: maserr@biol.unlp.edu.ar

Abstract

Kefir is a dairy product obtained by fermentation of milk with a complex microbial population and several health-promoting properties have been attributed to its consumption. In this work, we tested the ability of different kefir-isolated bacterial and yeast strains (Lactobacillus kefir, Lb. plantarum, Lactococcus lactis subps. lactis, Saccharomyces cerevisiae and Kluyveromyces marxianus) or a mixture of them (MM) to antagonise the cytopathic effect of toxins from Clostridium difficile (TcdA and TcdB). Cell detachment assays and F-actin network staining using Vero cell line were performed. Although incubation with microbial cells did not reduce the damage induced by C. difficile spent culture supernatant (SCS), Lc. lactis CIDCA 8221 and MM supernatants were able to inhibit the cytotoxicity of SCS to Vero cells. Fraction of Lc. lactis CIDCA 8221 supernatant containing components higher than 10 kDa were responsible for the inhibitory activity and heating of this fraction for 15 min at 100 °C completely abrogated this ability. By dot-blot assay with anti-TcdA or anti-TcdB antibodies, concentration of both toxins seems to be reduced in SCS treated with Lc. lactis CIDCA 8221 supernatant. However, protective effect was not affected by treatment with proteases or proteases-inhibitors tested. In conclusion, we demonstrated that kefir-isolated Lc. lactis CIDCA 8221 secreted heat-sensitive products able to protect eukaryotic cells from cytopathic effect of C. difficile toxins in vitro. Our findings provide new insights into the probiotic action of microorganisms isolated from kefir against virulence factors from intestinal pathogens.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, A, De Antoni, G & Añón, M 1990 Effect of calcium on the cryopreservation of L. bulgaricus in different freezing media. Cryobiology 27 186193CrossRefGoogle Scholar
Banerjee, P, Merkel, GJ & Bhunia, AK 2009 Lactobacillus delbrueckii ssp. bulgaricus B-30892 can inhibit cytotoxic effects and adhesion of pathogenic Clostridium difficile to Caco-2 cells. Gut Pathogens 1 8CrossRefGoogle ScholarPubMed
Bekar, O, Yilmaz, Y & Gulten, M 2011 Kefir improves the efficacy and tolerability of triple therapy in eradicating Helicobacter pylori. Journal of Medicinal Food 14 344347Google Scholar
Bolla, PA, de Serradell, ML, de Urraza, PJ & De Antoni, GL 2011 Effect of freeze-drying on viability and in vitro probiotic properties of a mixture of lactic acid bacteria and yeasts isolated from kefir. Journal of Dairy Research 78 1522Google Scholar
Carasi, P, Trejo, FM, Pérez, PF, De Antoni, GL & Serradell, MD 2012 Surface proteins from Lactobacillus kefir antagonize in vitro cytotoxic effect of Clostridium difficile toxins. Anaerobe 18 135142Google Scholar
Castagliuolo, I, LaMont, JT, Nikulasson, ST & Pothoulakis, C 1996 Saccharomyces boulardii protease inhibits Clostridium difficile toxin A effects in the rat ileum. Infection and Immunity 4 52255232Google Scholar
Castagliuolo, I, Keates, AC, Wang, CC, Pasha, A, Valenick, L, Kelly, CP, Nikulasson, ST, LaMont, JT & Pothoulakis, C 1998 Clostridium difficile toxin A stimulates macrophage-inflammatory protein-2 production in rat intestinal epithelial cells. Journal of Immunology 160 60396045Google Scholar
Castagliuolo, I, Riegler, MF, Valenick, L, LaMont, JT & Pothoulakis, C 1999 Saccharomyces boulardii protease inhibits the effects of Clostridium difficile toxins A and B in human colonic mucosa. Infection and Immunity 67 302307Google Scholar
Chen, X, Kokkotou, EG, Mustafa, N, Bhaskar, KR, Sougioultzis, S, O'Brien, M, Pothoulakis, C & Kelly, CP 2006 Saccharomyces boulardii inhibits ERK1/2 mitogen-activated protein kinase activation both in vitro and in vivo and protects against Clostridium difficile toxin A-induced enteritis. Journal of Biological Chemistry 281 2444924454Google Scholar
Christensen, JE, Dudley, EG, Pederson, JA & Steele, JL 1999 Peptidases and amino acid catabolism in lactic acid bacteria. Antonie van Leeuwenhoek 76 217246Google Scholar
Corthésy, B, Gaskins, HR & Mercenier, A 2007 Cross-talk between probiotic bacteria and the host immune system. Journal of Nutrition 137 781S–90SGoogle Scholar
Delfederico, L, Hollmann, A, Martínez, M, Iglesias, NG, De Antoni, G & Semorile, L 2006 Molecular identification and typing of lactobacilli isolated from kefir grains. Journal of Dairy Research 73 2027Google Scholar
Farnworth, ER 2005 Kefir – a complex probiotic. Food Science and Technology Bulletin 2 117Google Scholar
Foucaud-Scheunemann, C & Poquet, I 2003 HtrA is a key factor in the response to specific stress conditions in Lactococcus lactis. FEMS Microbiology Letters 224 5359Google Scholar
Garrote, G 2000 Bacterias y levaduras para la industria alimentaria: Kefir. PhD Thesis. Facultad de Ciencias Exactas-UNLPGoogle Scholar
Garrote, G, Abraham, A & De Antoni, G 2001 Chemical and microbiological characterisation of kefir grains. Journal of Dairy Research 68 639652Google Scholar
Garrote, G, Delfederico, L, Bibiloni, R, Abraham, A, Pérez, P, Semorile, L & De Antoni, G 2004 Heterofermentative lactobacilli isolated from kefir grains: evidence for the presence of S-layer proteins. Journal of Dairy Research 71 222230Google Scholar
Golowczyc, MA, Mobili, P, Garrote, GL, Abraham, AG & De Antoni, GL 2007 Protective action of Lactobacillus kefir carrying S-layer protein against Salmonella enterica serovar Enteritidis. Intrnational Journal of Food Microbiology 118 264273Google Scholar
Golowczyc, MA, Gugliada, MJ, Hollmann, A, Delfederico, L, Garrote, GL, Abraham, AG, Semorile, L & De Antoni, G 2008 Characterization of homofermentative lactobacilli isolated from kefir grains: potential use as probiotic. Journal of Dairy Research 75 211217Google Scholar
Golowczyc, M, Mobili, P, Garrote, GL, Serradell, MA, Abraham, AG & De Antoni, GL 2009 Interaction between Lactobacillus kefir and Saccharomyces lipolytica isolated from kefir grains: evidence for lectin-like activity of bacterial surface proteins. Journal of Dairy Research 76 111116Google Scholar
Hickson, M 2011 Probiotics in the prevention of antibiotic-associated diarrhoea and Clostridium difficile infection. Therapeutic Advance in Gastroenterology 4 185197Google Scholar
Hsi-Chia, C, Sheng-Yao, W & Ming-Ju, C 2008 Microbiological study of lactic acid bacteria in kefir grains by culture-dependent and culture-independent methods. Food Microbiology 25 492501Google Scholar
Hugo, AA, Kakisu, EJ, De Antoni, GL & Pérez, PF 2008 Lactobacilli antagonize biological effects of enterohaemorrhagic Escherichia coli in vitro. Letters in Applied Microbiology 46 613619Google Scholar
Jank, T, Giesemann, T & Aktories, K 2007 Rho-glucosylating Clostridium difficile Toxins A and B: new insights into structure and function. Glycobiology 17 15R22RGoogle Scholar
Limaye, AP, Turgeon, DK, Cookson, BT & Fritsche, TR 2000 Pseudomembranous colitis caused by a toxin A(−) B(+) strain of Clostridium difficile. Journal of Clinical Microbiology 38 696697Google Scholar
Londero, A, Quinta, R, Abraham, AG, Sereno, R, De Antoni, G & Garrote, GL 2011 Inhibitory activity of cheese whey fermented with kefir grains. Journal of Food Protection 74 94100Google Scholar
Mack, DR, Michail, S, Wei, S, McDougall, L, & Hollingsworth, MA 1999 Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. American Journal of Physiology – Cell Physiology 276 G941G950Google Scholar
Madsen, KL 2001 The use of probiotics in gastrointestinal disease. Canadian Journal of Gastroenterology 15 817822Google Scholar
Minnaard, J, Humen, M & Pérez, PF 2001 Effect of Bacillus cereus exocellular factors on human intestinal epithelial cells. Journal of Food Protection 64 15351541Google Scholar
Minnaard, J, Lievin-Le Moal, V, Coconnier, MH, Servin, AL & Pérez, PF 2004 Disassembly of F-actin cytoskeleton after interaction of Bacillus cereus with fully differentiated human intestinal Caco-2 cells. Infection and Immunity 72 31063112Google Scholar
Poquet, I, Saint, V, Seznec, E, Simoes, N, Bolotin, A & Gruss, A 2000 HtrA is the unique surface housekeeping protease in Lactococcus lactis and is required for natural protein processing. Molecular Microbiology 35 10421051Google Scholar
Pothoulakis, C, Kelly, CP, Joshi, MA, Gao, N, O'Keane, CJ, Castagliuolo, I & Lamont, JT 1993 Saccharomyces boulardii inhibits Clostridium difficile toxin A binding and enterotoxicity in rat ileum. Gastroenterology 104 11081115Google Scholar
Qamar, A, Aboudola, S, Warny, M, Michetti, P, Pothoulakis, C, LaMont, JT & Kelly, CP 2001 Saccharomyces boulardii stimulates intestinal immunoglobulin A immune response to Clostridium difficile toxin A in mice. Infection and Immunity 69 27622765Google Scholar
Romanin, D, Serradell, M, González Maciel, D, Lausada, N, Garrote, GL & Rumbo, M 2010 Down-regulation of intestinal epithelial innate response by probiotic yeasts isolated from kefir. International Journal of Food Microbiology 140 102108Google Scholar
Sasaki, M, Bosman, BW & Tan, PS 1995 Immunological and electrophoretic study of the proteolytic enzymes from various Lactococcus and Lactobacillus strains. Journal of Dairy Research 62 611620Google Scholar
Schirmer, J & Aktories, K 2004 Large clostridial cytotoxins: cellular biology of Rho/Ras-glucosylating toxins. Biochimica et Biophysica Acta 1673 6674Google Scholar
Servin, AL 2004 Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiology Reviews 28 405440Google Scholar
Trejo, FM, Minnaard, J, Pérez, PF & De Antoni, GL 2006 Inhibition of Clostridium difficile growth and adhesion to enterocytes by Bifidobacterium supernatants. Anaerobe 12 186193Google Scholar
Trejo, FM, Pérez, PF & De Antoni, GL 2010 Co-culture with potentially probiotic microorganisms antagonises virulence factors of Clostridium difficile in vitro. Antonie van Leeuwenhoek 98 1929Google Scholar
Vinderola, CG, Duarte, J, Thangavel, D, Perdigón, G, Farnworth, E & Matar, C 2005 Immunomodulating capacity of kefir. Journal of Dairy Research 72 195202Google Scholar
Vinderola, G, Perdigón, G, Duarte, J, Thangavel, D, Farnworth, E & Matar, C 2006 Effect of kefir fractions on innate immunity. Immunobiology 221 149156CrossRefGoogle Scholar