Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T23:25:04.909Z Has data issue: false hasContentIssue false

Isolation of lactobacilli from sow milk and evaluation of their probiotic potential

Published online by Cambridge University Press:  29 July 2009

Rocío Martín
Affiliation:
Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
Susana Delgado
Affiliation:
Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
Antonio Maldonado
Affiliation:
Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
Esther Jiménez
Affiliation:
Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
Mónica Olivares
Affiliation:
Department of Nutrition and Health, Puleva Biotech, 18004 Granada, Spain
Leónides Fernández
Affiliation:
Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
Odón J. Sobrino
Affiliation:
Ministerio de Medio Ambiente y Medio Rural y Marino, 28071 Madrid, Spain
Juan M. Rodríguez*
Affiliation:
Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
*
*For correspondence; e-mail: jmrodrig@vet.ucm.es

Abstract

Sow milk protects the piglet against infectious diseases through a variety of mechanisms. In this study, the presence of potentially probiotic lactic acid bacteria in this biological fluid was investigated. Milk samples were obtained from 8 sows and a total of 19 rod-shaped isolates were selected for identification and assessment of their probiotic potential. RAPD profiling revealed the existence of 8 different genetic profiles among them. One representative of each profile was selected for further characterization and they were identified as Lactobacillus reuteri, Lb. salivarius, Lb. plantarum, Lb. paraplantarum, Lb. brevis and Weissella paramesenteroides. Then, their probiotic potential was evaluated through different assays, including survival in conditions simulating those existing in the gastrointestinal tract, production of antimicrobial compounds, adherence to intestinal mucin, production of biogenic amines, degradation of mucin, and pattern of antibiotic sensitivity. Three strains, Lb. reuteri CR20 (a reuterin-producing strain), Lb. salivarius CELA2 (a bacteriocin-producing strain) and Lb. paraplantarum CLB7 displayed the highest probiotic potential.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beasley, SS & Saris, PEJ 2004 Nisin-producing Lactococcus lactis strains isolated from human milk. Applied and Environmental Microbiology 70 50515053CrossRefGoogle ScholarPubMed
Bover-Cid, S & Holzapfel, WH 1999 Improved screening procedure for biogenic amine production by lactic acid bacteria. International Journal of Food Microbiology 53 3341CrossRefGoogle ScholarPubMed
Çataloluk, O 2001 Molecular characterization of the gene encoding for the salivaricin B activity and its flanking sequences. Turkish Journal of Biology 25 379386Google Scholar
Claisse, O & Lonvaud-Funel, A 2001 Primers and a specific DNA probe for detecting lactic acid bacteria producing 3-hydroxypropionaldehyde from glycerol in spoiled ciders. Journal of Food Protection 64 833837CrossRefGoogle Scholar
Cohen, PS & Laux, DC 1995 Bacterial adhesion to and penetration of intestinal mucus in vitro. Methods in Enzymology 253 309314CrossRefGoogle ScholarPubMed
Conway, PL, Gorbach, SL & Goldin, BR 1987 Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. Journal of Dairy Science 70 112CrossRefGoogle ScholarPubMed
De Angelis, M, Siragusa, S, Caputo, L, Ragni, A, Burzigotti, R & Gobbetti, M 2007 Survival and persistence of Lactobacillus plantarum 4.1 and Lactobacillus reuteri 3S7 in the gastrointestinal tract of pigs. Veterinary Microbiology 123 133144CrossRefGoogle ScholarPubMed
EFSA 2008 Update of the criteria used in the assessment of bacterial resistance to antibiotics of human or veterinary importance. The EFSA Journal 732 115Google Scholar
Flynn, S, van Sinderen, D, Thornton, GM, Holo, H, Nes, IF & Collins, JK 2002 Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium Lactobacillus salivarius subsp. salivarius UCC118. Microbiology 148 973984CrossRefGoogle ScholarPubMed
Heikkilä, MP & Saris, PEJ 2003 Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. Journal of Applied Microbiology 95 471478CrossRefGoogle ScholarPubMed
Jiménez, E, Fernández, L, Maldonado, A, Martín, R, Olivares, M, Xaus, J & Rodríguez, JM 2008 Oral administration of lactobacilli strains isolated from breast milk as an alternative for the treatment of infectious mastitis during lactation. Applied and Environmental Microbiology 74 46504655CrossRefGoogle ScholarPubMed
Klare, I, Konstabel, C, Müller-Bertling, S, Reissbrodt, R, Huys, G, Vancanneyt, M, Swings, J, Goossens, H & Witte, W 2005 Evaluation of new broth media for microdilution antibiotic susceptibility testing of lactobacilli, pediococci, lactococci, and bifidobacteria. Applied and Environmental Microbiology 71 89828986CrossRefGoogle ScholarPubMed
Klare, I, Konstabel, C, Werner, G, Huys, G, Vankerckhoven, V, Kahlmeter, G, Hildebrandt, B, Müller-Bertling, S, Witte, W & Goossens, H 2007 Antimicrobial susceptibilities of Lactobacillus, Pediococcus and Lactococcus human isolates and cultures intended for probiotic or nutritional use. Journal of Antimicrobial Chemotherapy 59 900912CrossRefGoogle ScholarPubMed
Konstantinov, SR, Awati, AA, Williams, BA, Miller, BG, Jones, P, Stokes, CR, Akkermans, AD, Smidt, H & de Vos, WM 2006 Post-natal development of the porcine microbiota composition and activities. Environmental Microbiology 8 11911199CrossRefGoogle ScholarPubMed
Kullen, MJ, Sanozky-Dawes, RB, Crowell, DC & Klaenhammer, TR 2000 Use of DNA sequence of variable regions of the 16SrRNA gene for rapid and accurate identification of bacteria in the Lactobacillus acidophilus complex. Journal of Applied Microbiology 89 511518CrossRefGoogle Scholar
Leser, TD, Amenuvor, JZ, Jensen, TK, Lindecrona, RH, Boye, M & Møller, K 2002 Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Applied and Environmental Microbiology 68 673690CrossRefGoogle ScholarPubMed
Magnusson, J & Schnürer, J 2001 Lactobacillus coryniformis subsp. coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound. Applied and Environmental Microbiology 67 15CrossRefGoogle ScholarPubMed
Marteau, P, Minekus, M, Havenaar, R & Huis In't Veld, JHJ 1997 Survival of lactic acid bacteria in a dynamic model of the stomach and small intestine: validation and the effects of bile. Journal of Dairy Science 80 10311037CrossRefGoogle Scholar
Martín, R, Heilig, HG, Zoetendal, EG & Rodríguez, JM 2007 Diversity of the Lactobacillus group in breast milk and vagina of healthy women and potential role in the colonization of the infant gut. Journal of Applied Microbiology 103 26382644CrossRefGoogle ScholarPubMed
Martín, R, Langa, S, Reviriego, C, Jiménez, E, Marín, ML, Olivares, M, Boza, J, Jimenez, J, Fernandez, L, Xaus, J & Rodriguez, JM 2004 The commensal microflora of human milk: new perspectives for food bacteriotherapy and probiotics. Trends in Food Science & Technology 15 121127CrossRefGoogle Scholar
Martín, R, Langa, S, Reviriego, C, Jiménez, E, Marín, ML, Xaus, J, Fernández, L & Rodríguez, JM 2003 Human milk is a source of lactic acid bacteria for the infant gut. Journal of Pediatrics 143 754758CrossRefGoogle ScholarPubMed
Martín, R, Olivares, M, Marín, ML, Fernández, L, Xaus, J & Rodríguez, JM 2005a Probiotic potential of three lactobacilli strains isolated from breast milk. Journal of Human Lactation 21 8–17CrossRefGoogle Scholar
Martín, R, Olivares, M, Marín, ML, Xaus, J, Fernández, L & Rodríguez, JM 2005b Characterization of a reuterin-producing Lactobacillus coryniformis strain isolated from a goat's milk cheese. International Journal of Food Microbiology 104 267277CrossRefGoogle ScholarPubMed
Nagy, LK, Mackenzie, T & Bharucha, Z 1976 In vitro studies on the antimicrobial effects of colostrum and milk from vaccinated and unvaccinated pigs on Escherichia coli. Research in Veterinary Science 21 132140CrossRefGoogle ScholarPubMed
Newberry, RC & Wood-Gush, DGM 1986 Social relationships of piglets in a semi-natural environment. Animal Behaviour 34 13111318CrossRefGoogle Scholar
Paulino, LC, Tseng, CH, Strober, BE & Blaser, MJ 2006 Molecular analysis of fungal microbiota in samples from healthy human skin and psoriatic lesions. Journal of Clinical Microbiology 44 29332941CrossRefGoogle ScholarPubMed
Perez, PF, Doré, J, Leclerc, M, Levenez, F, Benyacoub, J, Serrant, P, Segura-Roggero, I, Schiffrin, EJ & Donnet-Hughes, A 2007 Bacterial imprinting of the neonatal immune system: lessons from maternal cells? Pediatrics 119 e724e732CrossRefGoogle ScholarPubMed
Ruiz-Barba, JL, Maldonado, A & Jiménez-Díaz, R 2005 Small-scale total DNA extraction from bacteria and yeast for PCR applications. Analytical Biochemistry 347 333335CrossRefGoogle ScholarPubMed
Simpson, JM, McCracken, VJ, Gaskins, HR & Mackie, RI 2000 Denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA amplicons to monitor changes in faecal bacterial populations of weaning pigs after introduction of Lactobacillus reuteri strain MM53. Applied and Environmental Microbiology 66 47054714CrossRefGoogle ScholarPubMed
Smiley, KL & Sobolov, M 1962 A cobamide-requiring glycerol dehydrase from an acrolein-forming Lactobacillus. Archives of Biochemistry and Biophysics 97 538543CrossRefGoogle ScholarPubMed
Su, Y, Yao, W, Perez-Gutierrez, ON, Smidt, H & Zhu, WY 2008 16S ribosomal RNA-based methods to monitor changes in the hindgut bacterial community of piglets after oral administration of Lactobacillus sobrius S1. Anaerobe 14 7886CrossRefGoogle ScholarPubMed
Talarico, TL, Casas, IA, Chung, TC & Dobrogosz, WJ 1988 Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrobial Agents and Chemotherapy 32 18541858CrossRefGoogle ScholarPubMed
Torriani, S, Felis, GE & Dellaglio, F 2001 Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primers. Applied and Environmental Microbiology 67 34503454CrossRefGoogle ScholarPubMed
Veyrat, A, Miralles, MC & Pérez-Martínez, G 1999 A fast method for monitoring the colonization rate of lactobacilli in a meat model system. Journal of Applied Microbiology 87 4961CrossRefGoogle Scholar
Zhou, JS, Gopal, PK & Hill, HS 2001 Potential probiotic lactic acid bacteria Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019) do not degrade gastric mucin in vitro. International Journal of Food Microbiology 63 8190CrossRefGoogle Scholar