Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T11:49:13.787Z Has data issue: false hasContentIssue false

Effect of temperature on diacetyl and acetoin production by Lactococcus lactis subsp. lactis biovar diacetilactis CNRZ 483

Published online by Cambridge University Press:  01 June 2009

Naïma Bassit
Affiliation:
Laboratoire de Génie des Procédés Biotechnologiques Agro-alimentaires, Institut National de la Recherche Agronomique (INRA), F-78850 Thiverval-Grignon, France
Clair-Yves Boquien*
Affiliation:
Laboratoire de Génie des Procédés Biotechnologiques Agro-alimentaires, Institut National de la Recherche Agronomique (INRA), F-78850 Thiverval-Grignon, France
Daniel Picque
Affiliation:
Laboratoire de Génie des Procédés Biotechnologiques Agro-alimentaires, Institut National de la Recherche Agronomique (INRA), F-78850 Thiverval-Grignon, France
Georges Corrieu
Affiliation:
Laboratoire de Génie des Procédés Biotechnologiques Agro-alimentaires, Institut National de la Recherche Agronomique (INRA), F-78850 Thiverval-Grignon, France
*
*For correspondence

Summary

We have investigated the effect of culture temperature on the growth of Lactococcus lactis subsp. lactis biovar diacetilactis, on its acidifying power, on diacetyl and acetoin production, and also on the activities of the principal enzymes involved in the synthesis of these two compounds. The rates of growth and lactic acid production decreased by a factor of ∼ 2 when the temperature decreased from 30 to 18°C. At 18°C, the maximal concentration of diacetyl (0·3mM) was 1·7 times that at 30°C, while that of acetoin was unchanged (5·2 mM). These results are explained by the behaviour of the principal enzymes involved in pyruvate metabolism. The activities of lactic dehydrogenase and acetolactate synthase varied little for culture temperatures between 18 and 30·C. However, the activity of NADH oxidase for a culture temperature of 18°C was 3·7 times that for 30°C, while that of diacetyl reductase for 30°C was 2·7 times that for 18°C. The net effect of temperature on these two activities was an increase in diacetyl production at lower temperature.

Type
Original articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anders, R. F., Hogg, D. M. & Jago, G. R. 1970 Formation of hydrogen peroxide by group N streptococci and its effect on their growth and metabolism. Applied Microbiology 19 608612CrossRefGoogle Scholar
Atkinson, B. & Mavituna, F. 1983 Solubility data. Biochemical Engineering and Biotechnology Handbook, pp.733736. Byfleet, Surrey: MacmillanGoogle Scholar
Bassit, N., Boquien, C. Y., Picqub, D. & Corrieu, G. 1993 Effect of initial oxygen concentration on diacetyl and acetoin production by Lactococcus lactis subsp. lactis biovar diacetylactis. Applied and Environmental Microbiology 59 18931897CrossRefGoogle ScholarPubMed
Bradford, M. M. 1976 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye-binding. Analytical Biochemistry 72 248254CrossRefGoogle ScholarPubMed
Bruhn, J. C. & Collins, E. B. 1970 Reduced nicotinamide adenine dinucleotide oxidase of Streptococcus diacetilactis. Journal of Dairy Science 53 857860CrossRefGoogle ScholarPubMed
Cogan, T. M. 1975 Citrate utilization in milk by Leuconostoc cremoris and Streptococcus diacetilactis. Journal of Dairy Research 42 139146CrossRefGoogle ScholarPubMed
Cogan, T. M. 1981 Constitutive nature of the enzymes of citrate metabolism in Streptococcus lactis subsp. diacetylactis. Journal of Dairy Research 48 489495CrossRefGoogle Scholar
Cogan, T. M. 1982 Acetoin production and citrate metabolism in Streptococcus lactis subsp. diacetylactis. Irish Journal of Food and Science Technology 6 6978Google Scholar
Golding, N. S., Amundson, H. & Wagenaar, R. O. 1943 Factors affecting the development of acidity in pasteurized skim milk inoculated with commercial lactic starters. Journal of Dairy Science 26 909919CrossRefGoogle Scholar
Kaneko, T., Takahashi, M. & Suzuki, H. 1990 Acetoin fermentation by citrate-positive Lactococcus lactis subsp. lactis 3022 grown aerobically in the presence of hemin or Cu2+. Applied and Environment Microbiology 56 26442649CrossRefGoogle ScholarPubMed
Koike, K., Kobayashi, T., Ito, S. & Saitoh, M. 1985 Purification and characterization of NADH oxidase from a strain of Leuconostoc mesenteroides. Journal of Biochemistry 97 12791288CrossRefGoogle ScholarPubMed
Lee, D. A. & Collins, E. B. 1976 Influences of temperature on growth of Streptococcus cremoris and Streptococcus lactis. Journal of Dairy Science 59 405409CrossRefGoogle Scholar
Libudzisz, Z. & Galewska, E. 1991 Citrate metabolism in Lactococcus lactis subsp. lactis var. diacetylactis strains. Nahrung 35 611618CrossRefGoogle Scholar
Millier, C. 1982 [Response curves.] In Modèles Dynamiques Déterministes en Biologic, pp. 162164 (Eds Lebreton, J. D. and Millier, C.). Paris: MassonGoogle Scholar
Oberman, H., Piatkiewicz, A. & Libudzisz, Z. 1982 Production of diacetyl and acetoin by lactic acid bacteria. Nahrung 26 615623CrossRefGoogle Scholar
Pack, M. Y., Vedamuthu, E. R., Sandine, W. E., Elliker, P. R. & Leesment, H. 1968 Effect of temperature on growth and diacetyl production by aroma bacteria in single- and mixed-strain lactic culture. Journal of Dairy Science 51 339344CrossRefGoogle Scholar
Petit, C, Vilchez, F. & Marczak, R. 1989 Formation and stabilization of diacetyl and acetoin concentration in fully grown cultures of Streptococcus lactis subsp. diacetylactis. Biotechnology Letters 11 5356CrossRefGoogle Scholar
Starrbnburg, M. J. C. & Hugenholtz, J. 1991 Citrate fermentation by Lactococcus and Leuconostoc spp. Applied and Environmental Microbiology 57 35353540CrossRefGoogle Scholar
Thomas, T. D., Turner, K. W. & Crow, V. L. 1980 Galactose fermentation by Streptococcus lactis and Streptococcus cremoris: pathways, products, and regulation. Journal of Bacteriology 144 672682CrossRefGoogle ScholarPubMed
Walsh, B. & Cogan, T. M. 1974 Separation and estimation of diacetyl and acetoin in milk. Journal of Dairy Research 41 2530CrossRefGoogle Scholar