Hostname: page-component-857557d7f7-nbs69 Total loading time: 0 Render date: 2025-12-08T23:51:45.446Z Has data issue: false hasContentIssue false

Characterization of bacteriophages infecting Escherichia coli associated with bovine mastitis

Published online by Cambridge University Press:  05 December 2025

Sashikanta Parida
Affiliation:
National Institute of Animal Biotechnology, Hyderabad, India Regional Centre for Biotechnology, Faridabad, India
Nagendra R. Hegde*
Affiliation:
National Institute of Animal Biotechnology, Hyderabad, India Regional Centre for Biotechnology, Faridabad, India
*
Corresponding author: Nagendra R. Hegde; Email: hegde@niab.org.in

Abstract

Bovine mastitis poses a significant threat to dairy production worldwide. Among the various etiologies of mastitis, Escherichia coli is a predominant environmental pathogen. Antibiotic-resistant E. coli poses substantial challenges for treating mastitis and is a threat to public health, necessitating the exploration of alternative therapeutic strategies. We studied bacteriophages as a potential alternative therapy for bovine mastitis-associated E. coli. We isolated 37 bacteriophages infecting E. coli, and characterized them for host range, growth kinetics, morphology, stability, genome fingerprinting and genome sequencing and analysis. The phages lysed between 4% and 62% of the E. coli isolates tested. Notably, 30 phages lysed bovine mastitis-associated strains. The 10 best phages selected based on host strain specificity revealed latent periods ranging from 50 to 90 min and burst sizes between 7 and 69 PFU/mL. Based on their shorter latent period and larger burst size, seven phages were subjected to transmission electron microscopy, which revealed their myovirus and siphovirus morphologies. Restriction fragment length polymorphism (RFLP) analysis of the same seven phages indicated six different patterns. The seven phages were stable at temperatures ranging from 4°C to 50°C, and at pH values ranging from 3 to 9. Whole-genome sequencing and analysis of the six phages, which showed unique RFLP patterns, predicted a lytic lifecycle, with no sequences encoding toxins or antibiotic-resistance genes. Importantly, these six phages were able to lyse multidrug-resistant and extended β-lactamase (ESBL)-producing E. coli under in vitro conditions and mastitis-associated E. coli in milk. Additionally, three phages belonging to different genera did not exhibit toxicity to mammalian cells. This study underscores the potential of bacteriophages as alternative therapeutic agents for E. coli-associated bovine mastitis. Our study has broader implications for udder and animal health, as well as the production of quality milk and dairy products, and food safety and security.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Hannah Dairy Research Foundation.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ackermann, HW (2009) Basic phage electron microscopy. Methods in Molecular Biology 501, 113126. doi:10.1007/978-1-60327-164-6_12CrossRefGoogle ScholarPubMed
Angelopoulou, A, Warda, AK, Hill, C and Ross, RP (2019) Non-antibiotic microbial solutions for bovine mastitis - live biotherapeutics, bacteriophage, and phage lysins. Critical Reviews in Microbiology 45(5-6), 564580. doi:10.1080/1040841X.2019.1648381CrossRefGoogle ScholarPubMed
Aranaga, C, Pantoja, LD, Martinez, EA and Falco, A (2022) Phage Therapy in the Era of Multidrug Resistance in Bacteria: a Systematic Review. International Journal of Molecular Sciences 23(9). doi:10.3390/ijms23094577CrossRefGoogle ScholarPubMed
Ashraf, A and Imran, M (2020) Causes, types, etiological agents, prevalence, diagnosis, treatment, prevention, effects on human health and future aspects of bovine mastitis. Animal Health Research Reviews 21(1), 3649. doi:10.1017/S1466252319000094CrossRefGoogle ScholarPubMed
Badiyal, A, Dhial, K, Singh, G, Dhar, P, Sharma, M and Verma, S (2024) Isolation, characterization and in vitro evaluation of novel lytic phages active against Staphylococcus aureus and Escherichia coli of bovine mastitis origin. Proceedings of the National Academy of Sciences, India Section B, Biological Sciences 95(1), 37–45. doi:10.1007/s40011-024-01621-4.Google Scholar
Bankevich, A, Nurk, S, Antipov, D, Gurevich, AA, Dvorkin, M, Kulikov, AS, Lesin, VM, Nikolenko, SI, Pham, S, Prjibelski, AD, Pyshkin, AV, Sirotkin, AV, Vyahhi, N, Tesler, G, Alekseyev, MA and Pevzner, PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology 19(5), 455477. doi:10.1089/cmb.2012.0021CrossRefGoogle ScholarPubMed
Bar, D, Grohn, YT, Bennett, G, Gonzalez, RN, Hertl, JA, Schulte, HF, Tauer, LW, Welcome, FL and Schukken, YH (2008a) Effects of repeated episodes of generic clinical mastitis on mortality and culling in dairy cows. Journal of Dairy Science 91(6), 21962204. doi:10.3168/jds.2007-0460CrossRefGoogle Scholar
Bar, D, Tauer, LW, Bennett, G, Gonzalez, RN, Hertl, JA, Schukken, YH, Schulte, HF, Welcome, FL and Grohn, YT (2008b) The cost of generic clinical mastitis in dairy cows as estimated by using dynamic programming. Journal of Dairy Science 91(6), 22052214. doi:10.3168/jds.2007-0573CrossRefGoogle Scholar
Bardhan, D and Sharma, ML (2013) Technical efficiency in milk production in underdeveloped production environment of India*. Springerplus 2(1), 65. doi:10.1186/2193-1801-2-65CrossRefGoogle ScholarPubMed
Bhatt, VD, Ahir, VB, Koringa, PG, Jakhesara, SJ, Rank, DN, Nauriyal, DS, Kunjadia, AP and Joshi, CG (2012) Milk microbiome signatures of subclinical mastitis-affected cattle analysed by shotgun sequencing. Journal of Applied Microbiology 112(4), 639650. doi:10.1111/j.1365-2672.2012.05244.xCrossRefGoogle ScholarPubMed
Bonestroo, J, Fall, N, Hogeveen, H, Emanuelson, U, Klaas, IC and van der Voort M, (2023) The costs of chronic mastitis: a simulation study of an automatic milking system farm. Preventive Veterinary Medicine 210, 105799. doi:10.1016/j.prevetmed.2022.105799CrossRefGoogle ScholarPubMed
Bortolaia, V, Kaas, RS, Ruppe, E, Roberts, MC, Schwarz, S, Cattoir, V, Philippon, A, Allesoe, RL, Rebelo, AR, Florensa, AF, Fagelhauer, L, Chakraborty, T, Neumann, B, Werner, G, Bender, JK, Stingl, K, Nguyen, M, Coppens, J, Xavier, BB, Malhotra-Kumar, S, Westh, H, Pinholt, M, Anjum, MF, Duggett, NA, Kempf, I, Nykasenoja, S, Olkkola, S, Wieczorek, K, Amaro, A, Clemente, L, Mossong, J, Losch, S, Ragimbeau, C, Lund, O and Aarestrup, FM (2020) ResFinder 4.0 for predictions of phenotypes from genotypes. Journal of Antimicrobial Chemotherapy 75(12), 34913500. doi:10.1093/jac/dkaa345CrossRefGoogle ScholarPubMed
Bouras, G, Nepal, R, Houtak, G, Psaltis, AJ, Wormald, PJ and Vreugde, S (2023) Pharokka: a fast scalable bacteriophage annotation tool. Bioinformatics 39(1). doi:10.1093/bioinformatics/btac776CrossRefGoogle ScholarPubMed
Camacho, C, Coulouris, G, Avagyan, V, Ma, N, Papadopoulos, J, Bealer, K and Madden, TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10, 421. doi:10.1186/1471-2105-10-421CrossRefGoogle ScholarPubMed
Chaudhary, V, Kajla, P, Lather, D, Chaudhary, N, Dangi, P, Singh, P and Pandiselvam, R (2024) Bacteriophages: a potential game changer in food processing industry. Critical Reviews in Biotechnology, 125. doi:10.1080/07388551.2023.2299768Google ScholarPubMed
Chen, J and Griffiths, MW (1998) PCR differentiation of Escherichia coli from other gram-negative bacteria using primers derived from the nucleotide sequences flanking the gene encoding the universal stress protein. Letters in Applied Microbiology 27(6), 369371. doi:10.1046/j.1472-765x.1998.00445.xCrossRefGoogle ScholarPubMed
Chen, WH, Woolston, J, Grant-Beurmann, S, Robinson, CK, Bansal, G, Nkeze, J, Permala-Booth, J, Fraser, CM, Tennant, SM, Shriver, MC, Pasetti, MF, Liang, Y, Kotloff, KL, Sulakvelidze, A and Schwartz, JA (2024) Safety and Tolerability of ShigActive, a Shigella sTargeting Bacteriophage Preparation, in a Phase 1 Randomized, Double-Blind, Controlled Clinical Trial. Antibiotics (Basel) 13(9). doi:10.3390/antibiotics13090858Google Scholar
Choi, Y, Lee, W, Kwon, JG, Kang, A, Kwak, MJ, Eor, JY and Kim, Y (2024) The current state of phage therapy in livestock and companion animals. Journal of Animal Science and Technology 66(1), 5778. doi:10.5187/jast.2024.e5CrossRefGoogle ScholarPubMed
Cui, L, Watanabe, S, Miyanaga, K, Kiga, K, Sasahara, T, Aiba, Y, Tan, XE, Veeranarayanan, S, Thitiananpakorn, K, Nguyen, HM and Wannigama, DL (2024) A Comprehensive Review on Phage Therapy and Phage-Based Drug Development. Antibiotics (Basel) 13(9). doi:10.3390/antibiotics13090870Google ScholarPubMed
da Silva Duarte, V, Dias, RS, Kropinski, AM, Campanaro, S, Treu, L, Siqueira, C, Vieira, MS, da Silva Paes, I, Santana, GR, Martins, F, Crispim, JS, da Silva Xavier, A, Ferro, CG, Vidigal, PMP, da Silva, CC and de Paula, SO (2018) Genomic analysis and immune response in a murine mastitis model of vB_EcoM-UFV13, a potential biocontrol agent for use in dairy cows. Scientific Reports 8(1), 6845. doi:10.1038/s41598-018-24896-wCrossRefGoogle Scholar
Das, D, Panda, SK, Jena, B and Sahoo, AK (2018) Economic impact of subclinical and clinical mastittis in Odisha, India. International Journal of Current Microbiology and Applied Science 7(3), 36513654.10.20546/ijcmas.2018.703.422CrossRefGoogle Scholar
El-Sayed, A and Kamel, M (2021) Bovine mastitis prevention and control in the post-antibiotic era. Tropical Animal Health and Production 53(2), 236. doi:10.1007/s11250-021-02680-9CrossRefGoogle ScholarPubMed
FAO (2022) Gateway to dairy production and products. Available at https://www.fao.org/dairy-production-products/production/dairy-animals/en/ (accessed 17th October 2024).Google Scholar
Garvey, M (2022) Bacteriophages and Food Production: biocontrol and Bio-Preservation Options for Food Safety. Antibiotics (Basel) 11(10). doi:10.3390/antibiotics11101324Google ScholarPubMed
Gildea, L, Ayariga, JA and Robertson, BK (2022) Bacteriophages as Biocontrol Agents in Livestock Food Production. Microorganisms 10(11). doi:10.3390/microorganisms10112126CrossRefGoogle ScholarPubMed
Grant, JR, Enns, E, Marinier, E, Mandal, A, Herman, EK, Chen, CY, Graham, M, Van Domselaar, G and Stothard, P (2023) Proksee: in-depth characterization and visualization of bacterial genomes. Nucleic Acids Research 51(W1), W484W492. doi:10.1093/nar/gkad326CrossRefGoogle ScholarPubMed
Guo, M, Gao, Y, Xue, Y, Liu, Y, Zeng, X, Cheng, Y, Ma, J, Wang, H, Sun, J, Wang, Z and Yan, Y (2021) Bacteriophage Cocktails Protect Dairy Cows Against Mastitis Caused By Drug Resistant Escherichia coli Infection. Frontiers in Cellular Infection and Microbiology 11, 690377. doi:10.3389/fcimb.2021.690377CrossRefGoogle ScholarPubMed
Guo, X, Luo, G, Hou, F, Zhou, C, Liu, X, Lei, Z, Niu, D, Ran, T and Tan, Z (2024) A review of bacteriophage and their application in domestic animals in a post-antibiotic era. Science of the Total Environment 949, 174931. doi:10.1016/j.scitotenv.2024.174931CrossRefGoogle Scholar
Hadrich, JC, Wolf, CA, Lombard, J and Dolak, TM (2018) Estimating milk yield and value losses from increased somatic cell count on US dairy farms. Journal of Dairy Science 101(4), 35883596. doi:10.3168/jds.2017-13840CrossRefGoogle ScholarPubMed
Halasa, T, Huijps, K, Osteras, O and Hogeveen, H (2007) Economic effects of bovine mastitis and mastitis management: a review. Veterinary Quarterly 29(1), 1831. doi:10.1080/01652176.2007.9695224CrossRefGoogle ScholarPubMed
Hatfull, GF, Dedrick, RM and Schooley, RT (2022) Phage Therapy for Antibiotic-Resistant Bacterial Infections. Annual Review of Medicine 73, 197211. doi:10.1146/annurev-med-080219-122208CrossRefGoogle ScholarPubMed
Hendrix, RW (2002) Bacteriophages: evolution of the majority. Theoretical Population Biology 61(4), 471480. doi:10.1006/tpbi.2002.1590CrossRefGoogle ScholarPubMed
Hogan, J and Larry Smith, K (2003) Coliform mastitis. Veterinary Research 34(5), 507519. doi:10.1051/vetres:2003022CrossRefGoogle ScholarPubMed
Hogeveen, H, Huijps, K and Lam, TJ (2011) Economic aspects of mastitis: new developments. New Zealand Veterinary Journal 59(1), 1623. doi:10.1080/00480169.2011.547165CrossRefGoogle ScholarPubMed
Hyman, P and Abedon, ST (2009) Practical methods for determining phage growth parameters. Methods in Molecular Biology 501, 175202. doi:10.1007/978-1-60327-164-6_18CrossRefGoogle ScholarPubMed
Imklin, N, Patikae, P, Poomirut, P, Arunvipas, P, Nasanit, R and Sajapitak, S (2024) Isolation of bacteriophages specific to bovine mastitis-causing bacteria and characterization of their lytic activity in pasteurized milk. Veterinary World 17(1), 207215. doi:10.14202/vetworld.2024.207-215CrossRefGoogle ScholarPubMed
Jakociune, D and Moodley, A (2018) A Rapid Bacteriophage DNA Extraction Method. Methods and Protocols 1(3). doi:10.3390/mps1030027CrossRefGoogle ScholarPubMed
Jiang, A, Liu, Z, Lv, X, Zhou, C, Ran, T and Tan, Z (2024) Prospects and Challenges of Bacteriophage Substitution for Antibiotics in Livestock and Poultry Production. Biology (Basel) 13(1). doi:10.3390/biology13010028Google ScholarPubMed
Joensen, KG, Scheutz, F, Lund, O, Hasman, H, Kaas, RS, Nielsen, EM and Aarestrup, FM (2014) Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. Journal of Clinical Microbiology 52(5), 15011510. doi:10.1128/JCM.03617-13CrossRefGoogle ScholarPubMed
Kim, MK, Suh, GA, Cullen, GD, Perez Rodriguez, S, Dharmaraj, T, Chang, THW, Li, Z, Chen, Q, Green, SI, Lavigne, R, Pirnay, JP, Bollyky, PL and Sacher, JC (2025) Bacteriophage therapy for multidrug-resistant infections: current technologies and therapeutic approaches. Journal of Clinical Investigation 135(5). doi:10.1172/JCI187996CrossRefGoogle ScholarPubMed
Kropinski, AM, Mazzocco, A, Waddell, TE, Lingohr, E and Johnson, RP (2009) Enumeration of bacteriophages by double agar overlay plaque assay. Methods in Molecular Biology 501, 6976. doi:10.1007/978-1-60327-164-6_7CrossRefGoogle ScholarPubMed
Kumar, S, Stecher, G, Li, M, Knyaz, C and Tamura, K (2018) MEGA X: molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution 35(6), 15471549. doi:10.1093/molbev/msy096CrossRefGoogle ScholarPubMed
Li, X, Xu, C, Liang, B, Kastelic, JP, Han, B, Tong, X and Gao, J (2023) Alternatives to antibiotics for treatment of mastitis in dairy cows. Frontiers in Veterinary Science 10, 1160350. doi:10.3389/fvets.2023.1160350CrossRefGoogle ScholarPubMed
Liu, J, Gao, S, Dong, Y, Lu, C and Liu, Y (2020) Isolation and characterization of bacteriophages against virulent Aeromonas hydrophila. BMC Microbiology 20(1), 141. doi:10.1186/s12866-020-01811-wCrossRefGoogle ScholarPubMed
Lowe, TM and Chan, PP (2016) tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Research 44(W1), W5457. doi:10.1093/nar/gkw413CrossRefGoogle ScholarPubMed
Malberg Tetzschner, AM, Johnson, JR, Johnston, BD, Lund, O and Scheutz, F (2020) In Silico Genotyping of Escherichia coli Isolates for Extraintestinal Virulence Genes by Use of Whole-Genome Sequencing Data. Journal of Clinical Microbiology 58(10). doi:10.1128/JCM.01269-20CrossRefGoogle ScholarPubMed
Mariramkumar (2019) Isolation and characterization of bacteriophages against Staphylococcus aureus and Escherichia coli. MVSc thesis submitted to the Department of Veterinary Microbiology, Maharashtra Animal and Fisheries Sciences University, Nagpur, India.Google Scholar
McLean, SK, Dunn, LA and Palombo, EA (2013) Phage inhibition of Escherichia coli in ultrahigh-temperature-treated and raw milk. Foodborne Pathogens and Disease 10(11), 956962. doi:10.1089/fpd.2012.1473CrossRefGoogle ScholarPubMed
Millard, A, Denise, R, Lestido, M, Thomas, M, Turner, D, Turner, D and Sicheritz-Ponten, T (2024) taxmyPHAGE: automated taxonomy of dsDNA phage genomes at the genus and species level. bioRxiv. doi:10.1101/2024.08.09.606593Google Scholar
Nale, JY and McEwan, NR (2023) Bacteriophage Therapy to Control Bovine Mastitis: a Review. Antibiotics (Basel) 12(8). doi:10.3390/antibiotics12081307Google ScholarPubMed
Narayanan, KB, Bhaskar, R and Han, SS (2024) Bacteriophages: natural antimicrobial bioadditives for food preservation in active packaging. International Journal of Biological Macromolecules 276(Pt 2), 133945. doi:10.1016/j.ijbiomac.2024.133945CrossRefGoogle ScholarPubMed
Nir-Paz, R, Onallah, H, Dekel, M, Gellman, YN, Haze, A, Ben-Ami, R, Braunstein, R, Hazan, R, Dror, D, Oster, Y, Cherniak, M, Attal, F, Barbosa, AR, Dordio, H, Wagner, A, Jones-Dias, D, Neves, J, Barreto, M, Leandro, C, Corte-Real, S and Garcia, M (2025) Randomized double-blind study on safety and tolerability of TP-102 phage cocktail in patients with infected and non-infected diabetic foot ulcers. Medicine 6(5), 100565. doi:10.1016/j.medj.2024.11.018CrossRefGoogle ScholarPubMed
O'Neill, J (2014) Antimicrobial Resistance: tackling a Crisis for the Health and Wealth of Nations. Wellcome Trust: London, U.K.Google Scholar
Oliveira, A, Dias, C, Oliveira, R, Almeida, C, Fucinos, P, Sillankorva, S and Oliveira, H (2024) Paving the way forward: escherichia coli bacteriophages in a One Health approach. Critical Reviews in Microbiology 50(1), 87104. doi:10.1080/1040841X.2022.2161869CrossRefGoogle ScholarPubMed
Pal, H (2023). Screening and characterization of phage for mastitis causing multi-drug resistant Escherichia coli and methicillin-resistant Staphylococcus aureus. MRSA. MTech thesis submitted to the Department of Animal Biotechnology, Indian Council of Agricultural Research - National Dairy Research Institute, Karnal, Haryana, India.Google Scholar
Pirnay, JP (2020) Phage Therapy in the Year 2035. Frontiers in Microbiology 11, 1171. doi:10.3389/fmicb.2020.01171CrossRefGoogle ScholarPubMed
Pope, WH, Mavrich, TN, Garlena, RA, Guerrero-Bustamante, CA, Jacobs-Sera, D, Montgomery, MT, Russell, DA, Warner, MH and Hatfull, GF, (2017) Bacteriophages of Gordonia sdisplay a spectrum of diversity and genetic relationships. mBio 8(4). doi:10.1128/mBio.01069-17CrossRefGoogle ScholarPubMed
Porter, J, Anderson, J, Carter, L, Donjacour, E and Paros, M (2016) In vitro evaluation of a novel bacteriophage cocktail as a preventative for bovine coliform mastitis. Journal of Dairy Science 99(3), 20532062. doi:10.3168/jds.2015-9748CrossRefGoogle ScholarPubMed
Poxleitner, M, Pope, W, Jacobs-Sera, D, Sivanathan, V and Hatfull, G (2018) Chapter 6: phage purification. In Phage Discovery Guide. SEA-PHAGES, Howard Hughes Medical Institute. Available at https://discoveryguide.seaphages.org/ Accessed 21 January, 2021.Google Scholar
Queipo-Ortuno, MI, De Dios Colmenero, J, Macias, M, Bravo, MJ and Morata, P (2008) Preparation of bacterial DNA template by boiling and effect of immunoglobulin G as an inhibitor in real-time PCR for serum samples from patients with brucellosis. Clinical and Vaccine Immunology 15(2), 293296. doi:10.1128/CVI.00270-07CrossRefGoogle Scholar
Rezaei, Z, Elikaei, A, Barzi, SM and Shafiei, M (2022) Isolation, characterization, and antibacterial activity of lytic bacteriophage against methicillin-resistant Staphylococcus aureus causing bedsore and diabetic woundsx. Iranian Journal of Microbiology 14(5), 712720. doi:10.18502/ijm.v14i5.10967Google Scholar
Salter, AM (2017) Improving the sustainability of global meat and milk production. The Proceedings of the Nutrition Society 76(1), 2227. doi:10.1017/S0029665116000276CrossRefGoogle ScholarPubMed
Sambrook, J and Russell, DW (2001) Molecular Cloning: a Laboratory Manual, 3rd edn. New York: Cold Spring Harbor Laboratory Press.Google Scholar
Seegers, H, Fourichon, C and Beaudeau, F (2003) Production effects related to mastitis and mastitis economics in dairy cattle herds. Veterinary Research 34(5), 475491. doi:10.1051/vetres:2003027CrossRefGoogle ScholarPubMed
Sharun, K, Dhama, K, Tiwari, R, Gugjoo, MB, Iqbal Yatoo, M, Patel, SK, Pathak, M, Karthik, K, Khurana, SK, Singh, R, Puvvala, B, Amarpal, SR, Singh, KP and Chaicumpa, W (2021) Advances in therapeutic and managemental approaches of bovine mastitis: a comprehensive review. Veterinary Quarterly 41(1), 107136. doi:10.1080/01652176.2021.1882713CrossRefGoogle ScholarPubMed
Shpigel, NY, Elazar, S and Rosenshine, I (2008) Mammary pathogenic Escherichia coli. Current Opinion in Microbiology 11(1), 6065. doi:10.1016/j.mib.2008.01.004CrossRefGoogle ScholarPubMed
Strathdee, SA, Hatfull, GF, Mutalik, VK and Schooley, RT (2023) Phage therapy: from biological mechanisms to future directions. Cell 186(1), 1731. doi:10.1016/j.cell.2022.11.017CrossRefGoogle ScholarPubMed
Tamma, PD, Souli, M, Billard, M, Campbell, J, Conrad, D, Ellison, DW, Evans, B, Evans, SR, Greenwood-Quaintance, KE, Filippov, AA, Geres, HS, Hamasaki, T, Komarow, L, Nikolich, MP, Lodise, TP, Nayak, SU, Norice-Tra, C, Patel, R, Pride, D, Russell, J, Van Tyne, D, Chambers, HF, FowlerJr, VG, Schooley, RT and Antibacterial Resistance Leadership, G (2022) Safety and microbiological activity of phage therapy in persons with cystic fibrosis colonized with Pseudomonas aeruginosa: study protocol for a phase 1b/2, multicenter, randomized, double-blind, placebo-controlled trial. Trials 23(1), 1057. doi:10.1186/s13063-022-07047-5CrossRefGoogle ScholarPubMed
Torkashvand, N, Kamyab, H, Aarabi, P, Shahverdi, AR, Torshizi, MAK, Khoshayand, MR and Sepehrizadeh, Z (2024) Evaluating the effectiveness and safety of a novel phage cocktail as a biocontrol of Salmonella in biofilm, food products, and broiler chicken. Frontiers in Microbiology 15, 1505805. doi:10.3389/fmicb.2024.1505805CrossRefGoogle ScholarPubMed
Tynecki, P, Guziński, A, Kazimierczak, J, Jadczuk, M, Dastych, J and Onisko, A (2020) PhageAI - Bacteriophage life cycle recognition with machine learning and natural language processing. bioRxiv. doi:10.1101/2020.07.11.198606Google Scholar
Uchechukwu, CF and Shonekan, A (2024) Current status of clinical trials for phage therapy. Journal of Medical Microbiology 73(9). doi:10.1099/jmm.0.001895CrossRefGoogle ScholarPubMed
Visioli, F and Strata, A (2014) Milk, dairy products, and their functional effects in humans: a narrative review of recent evidence. Advances in Nutrition: An International Review Journal 5(2), 131143. doi:10.3945/an.113.005025CrossRefGoogle ScholarPubMed
Weitz, JS, Poisot, T, Meyer, JR, Flores, CO, Valverde, S, Sullivan, MB and Hochberg, ME (2013) Phage-bacteria infection networks. Trends in Microbiology 21(2), 8291. doi:10.1016/j.tim.2012.11.003CrossRefGoogle ScholarPubMed
Xue, Y, Gao, Y, Guo, M, Zhang, Y, Zhao, G, Xia, L, Ma, J, Cheng, Y, Wang, H, Sun, J, Wang, Z and Yan, Y (2024) Phage cocktail superimposed disinfection: a ecological strategy for preventing pathogenic bacterial infections in dairy farms. Environmental Research 252(Pt 1), 118720. doi:10.1016/j.envres.2024.118720CrossRefGoogle ScholarPubMed
Zaatout, N (2022) An overview on mastitis-associated Escherichia coli: pathogenicity, host immunity and the use of alternative therapies. Microbiological Research 256, 126960. doi:10.1016/j.micres.2021.126960CrossRefGoogle ScholarPubMed
Zhu, X, Xiao, T, Jia, X, Ni, X, Zhang, X, Fang, Y and Hao, Z (2024) Isolation and evaluation of bacteriophage cocktail for the control of colistin-resistant Escherichia coli. Microbial Pathogenesis 197, 107056. doi:10.1016/j.micpath.2024.107056CrossRefGoogle ScholarPubMed
Supplementary material: File

Parida and Hegde supplementary material

Parida and Hegde supplementary material
Download Parida and Hegde supplementary material(File)
File 8 MB