Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T22:13:09.920Z Has data issue: false hasContentIssue false

Acidification test based on the use of biomass for screening of Leuconostoc. Application to Ln. mesenteroides strains isolated from French raw milk cheeses

Published online by Cambridge University Press:  01 June 2009

Yeter Demirci
Affiliation:
Institut National de la Recherche Agronomique (INRA), Station de Recherches Laitières, F-78352 Jouy-en-Josas Cedex, France
Denis Hemme
Affiliation:
Institut National de la Recherche Agronomique (INRA), Station de Recherches Laitières, F-78352 Jouy-en-Josas Cedex, France

Summary

Unlike that of other lactic acid bacteria, the growth of Leuconostoc spp. in milk is poor and the resulting acidification cannot be used to distinguish different strains. An acidification test based on the use of high initial numbers (109 cfu/ml) has been developed and proved to be an efficient tool for discriminating between 110 Leuconostoc strains isolated from French raw milk cheeses. The pH values after 24 h ranged from 6.55 to 4.05 and distinguished four acidification groups. All 34% of the strains that acidified milk to at least pH 5.1, coagulating it and should be considered as Lac+. The differences in rates and degrees of acidification could not be related to the proteolytic activity which was, from all 27 representative strains tested, similar to that of Lactococcus lactis Prt variants.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bellengier, P., Hemme, D.Foucaud, C. & 1994 Citrate metabolism in sixteen Leuconostoc mesenteroides subsp. mesenteroides and subsp. dextranicum strains. Journal of Applied Bacteriology 77 5460CrossRefGoogle Scholar
Boquien, C. -Y., Corrieu, G. & Desmazeaud, M. J. 1988 Effect of fermentation conditions on growth of Streptococcus cremoris AM2 and Leuconostoc lactis CNRZ 1091 in pure and mixed cultures. Applied and Environmental Microbiology 54 25272531CrossRefGoogle ScholarPubMed
Cogan, T. M. 1984 Mesophilic lactic cultures. International Dairy Federation Bulletin no. 179 7788Google Scholar
Collins, M. D., Samelis, J., Metaxopoulos, J. & Wallbanks, S. 1993 Taxonomic studies on some leuconostoc-like organisms from fermented sausages: description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. Journal of Applied Bacteriology 75 595603CrossRefGoogle ScholarPubMed
De Man, J. C, Rogosa, M. & Sharpe, M. E. 1960 A medium for the cultivation of lactobacilli. Journal of Applied Bacteriology 23 130135CrossRefGoogle Scholar
Demirci, Y. & Hemme, D. 1994 Growth of Leuconostoc mesenteroides strains isolated from French raw milk cheeses in a reference milk. Milchwissenschaft 49 483485Google Scholar
Devoyod, J. J. & Poullain, F. 1988 [The leuconostocs. Properties: their role in dairy technology.] Lait 68 249279CrossRefGoogle Scholar
Fantuzzi, L., Dicks, L. M. T., Du Toit, M., Reniero, R., Bottazzi, V. & Dellaoalio, F. 1992 Identification of Leuconostoc strains isolated from Argentine raw milk. Systematic and Applied Microbiology 15 229234CrossRefGoogle Scholar
Huggins, A. R. & Sandine, W. E. 1984 Differentiation of fast and slow milk-coagulating isolates in strains of lactic streptococci Journal of Dairy Science 67 16741679CrossRefGoogle Scholar
Le Bars, D. & Gripon, J. -C. 1993 Hydrolysis of αsl-casein by bovine plasmin. Lait 73 337344CrossRefGoogle Scholar
McKellar, R. C. 1981 Development of off-flavors in ultra-high temperature and pasteurized milk as a function of proteolysis. Journal of Dairy Science 64 21382145CrossRefGoogle Scholar
Mayeux, J. V., Sandine, W. E. & Elliker, P. R. 1962 A selective medium for detecting Leuconostoc organisms in mixed-strain starter cultures. Journal of Dairy Science 45 655656Google Scholar
Milliere, J. B., Mathot, A. -G., Schmitt, P. & Divies, C. 1989 Phenotypic characterization of Leuconostoc species. Journal of Applied Bacteriology 67 529542CrossRefGoogle Scholar
Sambrook, J., Fritsch, E. F. & Maniatis, T. 1989 Molecular Cloning: a laboratory manual, 2nd edn; 3 vols. New York: Cold Spring Harbor Laboratory PressGoogle Scholar
Schmitt, P., Mathot, A. -G. & Divies, C. 1989 Fatty acid composition of the genus Leuconostoc. Milchwissenschaft 44 556559Google Scholar
Vbdamuthu, E. R. 1994 The dairy Leuconostoc: use in dairy products. Journal of Dairy Science 77 27252737CrossRefGoogle Scholar
Vogensen, F. K., Karst, T., Larsen, J. J., Kringelum, B., Ellekjaer, D. & Nielsen, E. W. 1987 Improved direct differentiation between Leuconostoc cremoris, Streptococcus lactis subsp. diacetylactis, and Streptococcus cremoris/Streptococcus lactis on agar. Milchioissenschaft 42 646648Google Scholar
Walsh, B. & Cogan, T. M. 1973 Diacetyl, acetoin, and acetaldehyde production by mixed species lactic starter culture. Applied Microbiology 26 820825CrossRefGoogle Scholar