Hostname: page-component-68c7f8b79f-qcl88 Total loading time: 0 Render date: 2025-12-19T07:22:49.529Z Has data issue: false hasContentIssue false

Omics technologies in mastitis: text mining and topic modelling analysis of global research trends

Published online by Cambridge University Press:  18 December 2025

Necati Esener*
Affiliation:
Bahri Dagdas International Agricultural Research Institute, Konya, Türkiye

Abstract

Mastitis, an inflammation of the mammary gland, is a disease of significant clinical and economic importance. In recent years, advances in omics technologies have provided powerful tools to unravel the complex biological mechanisms underlying mastitis. These approaches encompass diverse fields such as genomics, proteomics, transcriptomics, metagenomics, metabolomics, epigenomics, lipidomics, glycomics, pharmacogenomics, foodomics, interactomics and exposomics. However, despite the rapid growth of omics research, the thematic structure of this literature has not been systematically examined. In this study, latent dirichlet allocation (LDA) was employed to perform topic modelling on publications related to omics and mastitis retrieved from Scopus and Web of Science. The LDA analysis revealed ten distinct topics, labelled according to the most frequent terms within each cluster: ‘proteomics’, ‘pathogen genomics’, ‘differential expression’, ‘metabolism’, ‘genetic selection’, ‘disease economy’, ‘molecular diagnostics’, ‘microbiome’, ‘antimicrobial resistance’ and ‘genetic variation.’ Among these, the topics of ‘genomics’, ‘differential expression’ and ‘antimicrobial resistance’ accounted for the highest number of publications, while ‘metabolism’ emerged more recently. All topics exhibited an increasing trend in publication volume over time, likely driven by the declining costs and greater accessibility of high-throughput omics technologies. This study provides a comprehensive thematic overview of omics research on mastitis, identifies key areas of emphasis and emerging directions, and highlights knowledge gaps that may inform future investigations and the development of targeted strategies for disease control and prevention.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Hannah Dairy Research Foundation.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aebersold, R and Mann, M (2016) Mass-spectrometric exploration of proteome structure and function. Nature 537(7620), 347355. https://doi.org/10.1038/nature19949CrossRefGoogle ScholarPubMed
Alawneh, JI, Vezina, B, Ramay, HR, Al-Harbi, H, James, AS, Soust, M, Moore, RJ and Olchowy, TWJ (2020) Survey and Sequence Characterization of Bovine Mastitis-Associated Escherichia coli in Dairy Herds. Frontiers in Veterinary Science 7, 582297. https://doi.org/10.3389/fvets.2020.582297CrossRefGoogle ScholarPubMed
Alonso, A, Marsal, S and Julià, A (2015) Analytical methods in untargeted metabolomics: state of the art in 2015. Frontiers in Bioengineering and Biotechnology 3, 23.10.3389/fbioe.2015.00023CrossRefGoogle ScholarPubMed
Amigo, CR, Moreno, LZ, Ferreira, TSP, Gomes, VTM, Poor, AP, de Oliveira, CH, Parra, BM, Silva, APS and Moreno, AM (2019) Phenotypic, molecular and genomic characterization of Actinobaculum suis isolated from swine in Brazil. Anaerobe 56, 2733. https://doi.org/10.1016/j.anaerobe.2019.01.004CrossRefGoogle ScholarPubMed
Aoki-Kinoshita, KF (2008) An Introduction to Bioinformatics for Glycomics Research. PLOS Computational Biology 4(5), e1000075. https://doi.org/10.1371/journal.pcbi.1000075CrossRefGoogle ScholarPubMed
Apostolakos, I, Tsigkrimani, M, Paramithiotis, S and Mataragas, M (2022) Whole-Genome Sequencing and Comparative Genomic Analysis of Enterococcus spp. Isolated from Dairy Products: genomic Diversity, Functional Characteristics, and Pathogenic Potential. Applied Sciences. https://doi.org/10.3390/app12199620CrossRefGoogle Scholar
Aria, M and Cuccurullo, C (2017) bibliometrix: an R-tool for comprehensive science mapping analysis. Journal of Informetrics 11(4), 959975. https://doi.org/10.1016/j.joi.2017.08.007CrossRefGoogle Scholar
Arıkan, M and Muth, T (2023) Integrated multi-omics analyses of microbial communities: a review of the current state and future directions. Molecular Omics 19(8), 607623.10.1039/D3MO00089CCrossRefGoogle ScholarPubMed
Asselstine, V, Medrano, JF, Muniz, MMM, Mallard, BA, Karrow, NA and Cánovas, A (2024) Novel lncRNA regulatory elements in milk somatic cells of Holstein dairy cows associated with mastitis. Communications Biology 7(1), 98. https://doi.org/10.1038/s42003-024-05764-yCrossRefGoogle ScholarPubMed
Baas, J, Schotten, M, Plume, A, Côté, G and Karimi, R (2020) Scopus as a curated, high-quality bibliometric data source for academic research in quantitative science studies. Quantitative Science Studies 1(1), 377386.10.1162/qss_a_00019CrossRefGoogle Scholar
Birkle, C, Pendlebury, DA, Schnell, J and Adams, J (2020) Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363376.10.1162/qss_a_00018CrossRefGoogle Scholar
Bisutti, V, Mach, N, Giannuzzi, D, Vanzin, A, Capra, E, Negrini, R, Gelain, ME, Cecchinato, A, Ajmone-Marsan, P and Pegolo, S (2023) Transcriptome-wide mapping of milk somatic cells upon subclinical mastitis infection in dairy cattle. Journal of Animal Science and Biotechnology 14(1), 93. https://doi.org/10.1186/s40104-023-00890-9CrossRefGoogle ScholarPubMed
Bourganou, MV, Chatzopoulos, DC, Lianou, DT and Tsangaris, GT (2024) Fthenakis GC and Katsafadou AI Scientometrics Evaluation of Published Scientific Papers on the Use of Proteomics Technologies in Mastitis Research in Ruminants. Pathogens. https://doi.org/10.3390/pathogens13040324CrossRefGoogle ScholarPubMed
Bouvier-Muller, J, Allain, C, Enjalbert, F, Farizon, Y, Portes, D, Foucras, G and Rupp, R (2018) Somatic cell count-based selection reduces susceptibility to energy shortage during early lactation in a sheep model. Journal of Dairy Science 101(3), 22482259. https://doi.org/10.3168/jds.2017-13479CrossRefGoogle Scholar
Brajnik, Z and Ogorevc, J (2023) Candidate genes for mastitis resistance in dairy cattle: a data integration approach. Journal of Animal Science and Biotechnology 14(1), 10.10.1186/s40104-022-00821-0CrossRefGoogle Scholar
Castro, I, Alba, C, Aparicio, M, Arroyo, R, Jiménez, L, Fernández, L, Arias, R and Rodríguez, JM (2019) Metataxonomic and immunological analysis of milk from ewes with or without a history of mastitis. Journal of Dairy Science 102(10), 92989311.10.3168/jds.2019-16403CrossRefGoogle ScholarPubMed
Chandramouli, K and Qian, P-Y (2009) Proteomics: challenges, techniques and possibilities to overcome biological sample complexity. Human Genomics and Proteomics: HGP 2009, 239204.Google ScholarPubMed
Chang, H, Wang, X, Zeng, H, Zhai, Y, Huang, N, Wang, C and Han, Z (2023) Comparison of ruminal microbiota, metabolomics, and milk performance between Montbéliarde× Holstein and Holstein cattle. Frontiers in Veterinary Science 10, 1178093.10.3389/fvets.2023.1178093CrossRefGoogle ScholarPubMed
Chen, Z, Xia, H, Shen, H, Xu, X, Arbab, AAI, Li, M, Zhang, H, Mao, Y and Yang, Z (2018) Pathological features of staphylococcus aureus induced mastitis in dairy cows and isobaric-tags-for-relative-and-absolute-quantitation proteomic analyses. Journal of Agricultural and Food Chemistry 66(15), 38803890. https://doi.org/10.1021/acs.jafc.7b05461CrossRefGoogle ScholarPubMed
Chiaradia, E, Valiani, A, Tartaglia, M, Scoppetta, F, Renzone, G, Arena, S, Avellini, L, Benda, S, Gaiti, A and Scaloni, A (2013) Ovine subclinical mastitis: proteomic analysis of whey and milk fat globules unveils putative diagnostic biomarkers in milk. Journal of Proteomics 83, 144159. https://doi.org/10.1016/j.jprot.2013.03.017CrossRefGoogle ScholarPubMed
Collado, R, Prenafeta, A, González-González, L, Pérez-Pons, JA and Sitjà, M (2016) Probing vaccine antigens against bovine mastitis caused by Streptococcus uberis. Vaccine 34(33), 38483854. https://doi.org/10.1016/j.vaccine.2016.05.044CrossRefGoogle ScholarPubMed
Contreras, GA and Rodríguez, JM (2011) Mastitis: comparative etiology and epidemiology. Journal of Mammary Gland Biology and Neoplasia 16(4), 339356.10.1007/s10911-011-9234-0CrossRefGoogle Scholar
Danielsen, M, Codrea, MC, Ingvartsen, KL, Friggens, NC, Bendixen, E and Røntved, CM (2010) Quantitative milk proteomics–Host responses to lipopolysaccharide‐mediated inflammation of bovine mammary gland. Proteomics 10(12), 22402249.10.1002/pmic.200900771CrossRefGoogle ScholarPubMed
Das, H, Swamy, N, Sahoo, G, Ahmed, SU and More, T (2008) Beta-defensin antibiotic peptides in the innate immunity of the Buffalo: in vivo and in vitro studies. Alternatives to Laboratory Animals 36(4), 429440. https://doi.org/10.1177/026119290803600404CrossRefGoogle ScholarPubMed
De Filippis, GM, Rinaldi, AM, Russo, C and Tommasino, C (2024, December) Advanced topic modeling in genomics: towards personalized dietary recommendations through BERTopic analysis. In International Conference on Information Integration and Web Intelligence 317. Cham: Springer Nature Switzerland.Google Scholar
Donkor, ES (2013) Sequencing of bacterial genomes: principles and insights into pathogenesis and development of antibiotics. Genes (Basel) 4(4), 556572. https://doi.org/10.3390/genes4040556CrossRefGoogle ScholarPubMed
Esener, N (2025) Exploring trends in reproductive system microbiome research in farm animals: a bibliometric approach. Research in Veterinary Science 186, 105583.10.1016/j.rvsc.2025.105583CrossRefGoogle ScholarPubMed
Evans, WE and Relling, MV (2004) Moving towards individualized medicine with pharmacogenomics. Nature 429(6990), 464468. https://doi.org/10.1038/nature02626CrossRefGoogle ScholarPubMed
Fazzari, MJ and Greally, JM (2004) Epigenomics: beyond CpG islands. Nature Reviews Genetics 5(6), 446455. https://doi.org/10.1038/nrg1349CrossRefGoogle ScholarPubMed
Fenske, L, Noll, I, Blom, J, Ewers, C, Semmler, T, Fawzy, A and Eisenberg, T (2022) A dominant clonal lineage of Streptococcus uberis in cattle in Germany. Antonie van Leeuwenhoek 115(7), 857870. https://doi.org/10.1007/s10482-022-01740-wCrossRefGoogle ScholarPubMed
Fijałkowski, K, Masiuk, H, Czernomysy-Furowicz, D, Karakulska, J, Nawrotek, P, Paszkowska, A, Struk, M and Giedrys-Kalemba, S (2013) Superantigen gene profiles, genetic relatedness and biological activity of exosecretions of Staphylococcus aureus isolates obtained from milk of cows with clinical mastitis. Microbiology and Immunology 57(10), 674683. https://doi.org/10.1111/1348-0421.12088CrossRefGoogle ScholarPubMed
Gao, J, Liu, Y-C, Wang, Y, Li, H, Wang, X-M, Wu, Y, Zhang, D-R, Gao, S and Qi, Z-L (2020) Impact of yeast and lactic acid bacteria on mastitis and milk microbiota composition of dairy cows. AMB Express 10(1), 22. https://doi.org/10.1186/s13568-020-0953-8CrossRefGoogle ScholarPubMed
Garcia, SN, Osburn, BI and Cullor, JS (2019) A one health perspective on dairy production and dairy food safety. One Health 7, 100086. https://doi.org/10.1016/j.onehlt.2019.100086CrossRefGoogle ScholarPubMed
Gilbert, FB, Fromageau, A, Lamoureux, J and Poutrel, B (2006) Evaluation of tandem repeats for MLVA typing of Streptococcus uberis isolated from bovine mastitis. BMC Veterinary Research 2(1), 33. https://doi.org/10.1186/1746-6148-2-33CrossRefGoogle ScholarPubMed
Gioia, G, Severgnini, M, Cremonesi, P, Castiglioni, B, Freeman, J, Sipka, A, Santisteban, C, Wieland, M, Gallardo, VA, Scott, JG, Moroni, P and Addis, MF (2023) Genomic characterization of Mycoplasma arginini isolated from a housefly on a dairy farm and comparison with isolates from bovine milk and lung tissue. Microbiology Spectrum 11(3), e0301003022. https://doi.org/10.1128/spectrum.03010-22CrossRefGoogle ScholarPubMed
Goldstone, RJ, Harris, S and Smith, DGE (2016) Genomic content typifying a prevalent clade of bovine mastitis-associated Escherichia coli. Scientific Reports 6(1), 30115. https://doi.org/10.1038/srep30115CrossRefGoogle ScholarPubMed
Greening, SS, Zhang, J, Midwinter, AC, Wilkinson, DA, McDougall, S, Gates, MC and French, NP (2021) The genetic relatedness and antimicrobial resistance patterns of mastitis-causing staphylococcus aureus strains isolated from New Zealand dairy cattle. Veterinary Sciences. https://doi.org/10.3390/vetsci8110287CrossRefGoogle ScholarPubMed
Grützke, J, Gwida, M, Deneke, C, Brendebach, H, Projahn, M, Schattschneider, A, Hofreuter, D, El-Ashker, M, Malorny, B and Al Dahouk, S (2021) Direct identification and molecular characterization of zoonotic hazards in raw milk by metagenomics using Brucella as a model pathogen. Microbial Genomics 7(5), 000552.10.1099/mgen.0.000552CrossRefGoogle ScholarPubMed
Hasankhani, A, Bakherad, M, Bahrami, A, Shahrbabak, HM, Pecho, RDC and Shahrbabak, MM (2023) Integrated analysis of inflammatory mRNAs, miRNAs, and lncRNAs elucidates the molecular interactome behind bovine mastitis. Scientific Reports 13(1), 13826. https://doi.org/10.1038/s41598-023-41116-2CrossRefGoogle ScholarPubMed
Haxhiaj, K, Li, Z, Johnson, M and Dunn, SM (2022) Wishart DS and Ametaj BN blood metabolomic phenotyping of dry cows could predict the high milk somatic cells in early lactation – preliminary results. Dairy. https://doi.org/10.3390/dairy3010005CrossRefGoogle Scholar
Herrero, M, Simó, C, García-Cañas, V, Ibáñez, E and Cifuentes, A (2012) Foodomics: MS-based strategies in modern food science and nutrition. Mass Spectrometry Reviews 31(1), 4969. https://doi.org/10.1002/mas.20335CrossRefGoogle ScholarPubMed
Hoque, MN, Istiaq, A, Rahman, MS, Islam, MR, Anwar, A, Siddiki, AMAMZ, Sultana, M, Crandall, KA and Hossain, MA (2020) Microbiome dynamics and genomic determinants of bovine mastitis. Genomics 112(6), 51885203. https://doi.org/10.1016/j.ygeno.2020.09.039CrossRefGoogle ScholarPubMed
Huang, L, Zhu, L, Yan, J, Lin, Y, Ding, D, He, L, Li, Y, Ying, Y, Shen, L and Jiang, Y (2024) Genomic characterization and outbreak investigations of methicillin-resistant Staphylococcus aureus in a county-level hospital in China. Frontiers in Microbiology 15, 1387855.10.3389/fmicb.2024.1387855CrossRefGoogle Scholar
Jayarao, BM, Doré, JJ Jr, Baumbach, GA, Matthews, KR and Oliver, SP (1991) Differentiation of Streptococcus uberis from Streptococcus parauberis by polymerase chain reaction and restriction fragment length polymorphism analysis of 16S ribosomal DNA. Journal of Clinical Microbiology 29(12), 27742778. https://doi.org/10.1128/jcm.29.12.2774-2778.1991CrossRefGoogle ScholarPubMed
Jiang, C, Fang, W, Chen, S, Guo, X, Gao, X, Liu, P, Hu, G, Li, G, Mai, W and Liu, P (2024) Genetic framework sequencing analysis of Candida tropicalis in dairy cow mastitis and study of pathogenicity and drug resistance. BMC Microbiology 24(1), 428. https://doi.org/10.1186/s12866-024-03522-yCrossRefGoogle ScholarPubMed
Kang, SJ, Cho, YI, Kim, KH and Cho, ES (2016) Proteomic analysis to elucidate the antibacterial action of silver ions against bovine mastitis pathogens. Biological Trace Element Research 171, 101106.10.1007/s12011-015-0510-5CrossRefGoogle ScholarPubMed
Kim, Y, Atalla, H, Mallard, B, Robert, C and Karrow, N (2011) Changes in Holstein cow milk and serum proteins during intramammary infection with three different strains of Staphylococcus aureus. BMC Veterinary Research 7, 113.10.1186/1746-6148-7-51CrossRefGoogle ScholarPubMed
Knight, R, Vrbanac, A, Taylor, BC, Aksenov, A, Callewaert, C, Debelius, J, Gonzalez, A, Kosciolek, T, McCall, L-I, McDonald, D, Melnik, AV, Morton, JT, Navas, J, Quinn, RA, Sanders, JG, Swafford, AD, Thompson, LR, Tripathi, A, Xu, ZZ, Zaneveld, JR, Zhu, Q, Caporaso, JG and Dorrestein, PC (2018) Best practices for analysing microbiomes. Nature Reviews Microbiology 16(7), 410422. https://doi.org/10.1038/s41579-018-0029-9CrossRefGoogle ScholarPubMed
Kolde, R and Kolde, MR (2015) Package ‘pheatmap’. R Package 1(7), 790.Google Scholar
Kumar, R, Register, K, Christopher-Hennings, J, Moroni, P, Gioia, G, Garcia-Fernandez, N, Nelson, J, Jelinski, MD, Lysnyansky, I and Bayles, D (2020) Population genomic analysis of Mycoplasma bovis elucidates geographical variations and genes associated with host-types. Microorganisms 8(10), 1561.10.3390/microorganisms8101561CrossRefGoogle ScholarPubMed
Kurz, JP, Yang, Z, Weiss, RB, Wilson, DJ, Rood, KA, Liu, GE and Wang, Z (2019) A genome-wide association study for mastitis resistance in phenotypically well-characterized Holstein dairy cattle using a selective genotyping approach. Immunogenetics 71(1), 3547. https://doi.org/10.1007/s00251-018-1088-9CrossRefGoogle ScholarPubMed
Li, X, Ding, XZ, Wan, YL, Liu, YM and Du, GZ (2014) Comparative proteomic changes of differentially expressed whey proteins in clinical mastitis and healthy yak cows. Genetics and Molecular Research 13(3), 65936601.10.4238/2014.August.28.4CrossRefGoogle ScholarPubMed
Li, Y, Chen, W, Ma, J, Huang, G, Li, G, He, Q, Kong, X, Tang, L, Chen, J, Ding, W and Zhang, Z (2024) Rhein against Staphylococcus xylosus by interfering with respiratory metabolism and inducing oxidative stress. Current Research in Food Science 8, 100718. https://doi.org/10.1016/j.crfs.2024.100718CrossRefGoogle ScholarPubMed
Liu, A, Lund, MS, Boichard, D, Karaman, E, Fritz, S, Aamand, GP, Nielsen, US, Wang, Y and Su, G (2020) Improvement of genomic prediction by integrating additional single nucleotide polymorphisms selected from imputed whole genome sequencing data. Heredity 124(1), 3749. https://doi.org/10.1038/s41437-019-0246-7CrossRefGoogle ScholarPubMed
Liu, X, Wang, J, Chen, M, Che, R, Ding, W, Yu, F, Zhou, Y, Cui, W, Xiaoxu, X and God'spower, B-O (2019) Comparative proteomic analysis reveals drug resistance of Staphylococcus xylosus ATCC700404 under tylosin stress. BMC Veterinary Research 15, 111.10.1186/s12917-019-1959-9CrossRefGoogle ScholarPubMed
Lopes, F, Rosa, G, Pinedo, P, Santos, JEP, Chebel, RC, Galvao, KN, Schuenemann, GM, Bicalho, RC, Gilbert, RO, Rodrigez-Zas, S, Seabury, CM and Thatcher, W (2020) Genome-enable prediction for health traits using high-density SNP panel in US Holstein cattle. Animal Genetics 51(2), 192199. https://doi.org/10.1111/age.12892CrossRefGoogle ScholarPubMed
Luo, Y, Kong, Z, Yang, B, He, F, Huan, C, Li, J and Yi, K (2023) Relationship between microflora changes and mammary lipid metabolism in dairy cows with mastitis. Animals. https://doi.org/10.3390/ani13172773CrossRefGoogle ScholarPubMed
Marete, A, Lund, MS, Boichard, D and Ramayo-Caldas, Y (2018) A system-based analysis of the genetic determinism of udder conformation and health phenotypes across three French dairy cattle breeds. PLoS One 13(7), e0199931.10.1371/journal.pone.0199931CrossRefGoogle ScholarPubMed
Matthews, KR, Kumar, SJ, O'Conner, SA, Harmon, RJ, Pankey, JW, Fox, LK and Oliver, SP (1994) Genomic fingerprints of Staphylococcus aureus of bovine origin by polymerase chain reaction-based DNA fingerprinting. Epidemiology and Infection 112(1), 177186. https://doi.org/10.1017/S095026880005754XCrossRefGoogle ScholarPubMed
Melo, DA, Motta, CC, Rojas, A, Soares, BS, Coelho, IS, Coelho, SMO and Souza, MMS (2018) Characterization of Coagulase-Negative Staphylococci and pheno-genotypic beta lactam resistance evaluation in samples from bovine Intramammary infection. Arquivo Brasileiro de Medicina Veterinária E Zootecnia 70, 368374.10.1590/1678-4162-9209CrossRefGoogle Scholar
Moyes, KM, Sørensen, P and Bionaz, M (2016) The impact of intramammary Escherichia coli challenge on liver and mammary transcriptome and cross-talk in dairy cows during early lactation using RNAseq. PLOS ONE 11(6), e0157480. https://doi.org/10.1371/journal.pone.0157480CrossRefGoogle ScholarPubMed
Murungi, E, Masila, E, Ogali, I, Langat, N, Onywera, R, Malonza, V, Inguyesi, C, Onyambu, F, Wesonga, H and Maichomo, M (2022) Draft genome sequence of Streptococcus agalactiae KALRO-LC1 strain isolated from a mastitis-infected camel in Laikipia County, Kenya. Microbiology Resource Announcements 11(10), e0091000922. https://doi.org/10.1128/mra.00910-22CrossRefGoogle ScholarPubMed
Musser, JM, Schlievert, PM, Chow, AW, Ewan, P, Kreiswirth, BN, Rosdahl, VT, Naidu, AS, Witte, W and Selander, RK (1990) A single clone of Staphylococcus aureus causes the majority of cases of toxic shock syndrome. Proceedings of the National Academy of Sciences 87(1), 225229. https://doi.org/10.1073/pnas.87.1.225CrossRefGoogle ScholarPubMed
Myllys, V, Ridell, J, Björkroth, J, Biese, I and Pyörälä, S (1997) Persistence in bovine mastitis of Staphylococcus aureus clones as assessed by random amplified polymorphic DNA analysis, ribotyping and biotyping. Veterinary Microbiology 57(2-3), 245251.10.1016/S0378-1135(97)00137-5CrossRefGoogle ScholarPubMed
Nehme, A, Awada, Z, Kobeissy, F, Mazurier, F and Zibara, K (2018) coupling large-scale omics data for deciphering systems complexity. In Rajewsky, N, Jurga, S and Barciszewski, J (eds.), Systems Biology. Cham: Springer International Publishing, pp. 153172.10.1007/978-3-319-92967-5_8CrossRefGoogle Scholar
Oliveira, LM, Simões, LC, Crestani, C, Costa, NS, Pantoja, JC, Rabello, RF, Teixeira, LM, Khan, UB, Bentley, S, Jamrozy, D, Pinto, TD and Zadoks, RN (2024) Long-term co-circulation of host-specialist and host-generalist lineages of group B Streptococcus in Brazilian dairy cattle with heterogeneous antimicrobial resistance profiles. Antibiotics. https://doi.org/10.3390/antibiotics13050389CrossRefGoogle ScholarPubMed
Olumee-Shabon, Z, Swain, T, Smith, EA, Tall, E and Boehmer, JL (2013) Proteomic analysis of differentially expressed proteins in caprine milk during experimentally induced endotoxin mastitis. Journal of Dairy Science 96(5), 29032912.10.3168/jds.2012-5956CrossRefGoogle ScholarPubMed
Opsal, MA, Våge, DI, Hayes, B, Berget, I and Lien, S (2006) Genomic organization and transcript profiling of the bovine toll-like receptor gene cluster TLR6-TLR1-TLR10. Gene 384, 4550. https://doi.org/10.1016/j.gene.2006.06.027CrossRefGoogle ScholarPubMed
Park, S, Jung, D, O'Brien, B, Ruffini, J, Dussault, F, Dube-Duquette, A, É, D, Lucier, J-F, Malouin, F and Dufour, S (2022) Comparative genomic analysis of Staphylococcus aureus isolates associated with either bovine intramammary infections or human infections demonstrates the importance of restriction-modification systems in host adaptation. Microbial Genomics 8(2), 000779.10.1099/mgen.0.000779CrossRefGoogle ScholarPubMed
Patel, K, Joshi, C, Nauriyal, D and Kunjadiya, A (2017) Genotypic identification of methicillin resistance and virulence factors in Staphylococcus spp. from bovine mastitis milk. Comparative Clinical Pathology 26(6), 13551361. https://doi.org/10.1007/s00580-017-2540-1CrossRefGoogle Scholar
Patti, GJ, Yanes, O and Siuzdak, G (2012) Metabolomics: the apogee of the omics trilogy. Nature Reviews Molecular Cell Biology 13(4), 263269.10.1038/nrm3314CrossRefGoogle ScholarPubMed
R Core Team (2019) R: a Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Rahman, MH, El Zowalaty, ME, Falgenhauer, L, Khan, MFR, Alam, J, Popy, NN and Rahman, MB (2024) Draft genome sequences of clinical mastitis-associated Enterococcus faecalis and Enterococcus faecium carrying multiple antimicrobial resistance genes isolated from dairy cows. Journal of Global Antimicrobial Resistance 38, 111115. https://doi.org/10.1016/j.jgar.2024.05.011CrossRefGoogle ScholarPubMed
Rahman, MM, Siddique, N, Gilman, MAA, Hasnat, S, Haider, MG, Talukder, AK, Rahman, A, Islam, T, Das, ZC, Hossain, MA and Hoque, MN (2025) Genomic and in vitro analysis of Pediococcus pentosaceus MBBL4 Implicated Its Therapeutic use against mastitis pathogens and as a potential probiotic. Probiotics and Antimicrobial Proteins. https://doi.org/10.1007/s12602-025-10484-8CrossRefGoogle ScholarPubMed
Rahman Mohammad, H, El Zowalaty Mohamed, E, Falgenhauer, L, Khan Mohammad Ferdousur, R, Alam, J, Popy Najmun, N and Rahman, MB (2023) Draft genome sequences of two clinical mastitis-associated Escherichia coli strains, of sequence type 101 and novel sequence type 13054, isolated from dairy cows in Bangladesh. Microbiology Resource Announcements 12(8), e0016600123. https://doi.org/10.1128/mra.00166-23Google ScholarPubMed
Rathore, D, Marino, MJ and Nita‐Lazar, A (2023) Omics and systems view of innate immune pathways. Proteomics 23(13-14), 2200407.10.1002/pmic.202200407CrossRefGoogle ScholarPubMed
Ribeiro, GAS and Melgaço, BR, Márcio, dCR and Costa, NL (2024) From bibliometrics to text mining: exploring feature selection methods in microarray research. Communications in Statistics - Simulation and Computation 117. https://doi.org/10.1080/03610918.2024.2331083Google Scholar
Rinschen, MM, Ivanisevic, J, Giera, M and Siuzdak, G (2019) Identification of bioactive metabolites using activity metabolomics. Nature Reviews Molecular Cell Biology 20(6), 353367. https://doi.org/10.1038/s41580-019-0108-4CrossRefGoogle ScholarPubMed
Rodríguez, MF, Gomez, AP and Ceballos-Garzon, A (2023) Antimicrobial resistance profiles of Staphylococcus Isolated from cows with subclinical mastitis: do strains from the environment and from humans contribute to the dissemination of resistance among bacteria on dairy farms in Colombia? Antibiotics. https://doi.org/10.3390/antibiotics12111574CrossRefGoogle Scholar
Rosenthal, R (1979) The file drawer problem and tolerance for null results. Psychological Bulletin 86(3), 638.10.1037/0033-2909.86.3.638CrossRefGoogle Scholar
Ruegg, PL (2017) A 100-Year Review: mastitis detection, management, and prevention. Journal of Dairy Science 100(12), 1038110397. https://doi.org/10.3168/jds.2017-13023CrossRefGoogle ScholarPubMed
Schena, M, Shalon, D, Davis, RW and Brown, PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235), 467470.10.1126/science.270.5235.467CrossRefGoogle ScholarPubMed
Schmidtmann, C, Schönherz, A, Guldbrandtsen, B, Marjanovic, J, Calus, M, Hinrichs, D and Thaller, G (2021) Assessing the genetic background and genomic relatedness of red cattle populations originating from Northern Europe. Genetics Selection Evolution 53(1), 23. https://doi.org/10.1186/s12711-021-00613-6CrossRefGoogle ScholarPubMed
Shendure, J and Ji, H (2008) Next-generation DNA sequencing. Nature Biotechnology 26(10), 11351145. https://doi.org/10.1038/nbt1486CrossRefGoogle ScholarPubMed
Sievert, C and Shirley, K (2014, June) LDAvis: a method for visualizing and interpreting topics. In Proceedings of the workshop on interactive language learning, visualization, and interfaces, 6370.10.3115/v1/W14-3110CrossRefGoogle Scholar
Silva, NCC, Yang, Y, Rodrigues, MX, Tomazi, T and Bicalho, RC (2021) Whole-genome sequencing reveals high genetic diversity of Streptococcus uberis isolated from cows with mastitis. BMC Veterinary Research 17(1), 321. https://doi.org/10.1186/s12917-021-03031-4CrossRefGoogle ScholarPubMed
Sun, Y, Li, L, Li, C, Wang, G and Xing, G (2019) Gene microarray integrated with iTRAQ-based proteomics for the discovery of NLRP3 in LPS-induced inflammatory response of bovine mammary epithelial cells. Journal of Dairy Research 86(4), 416424. https://doi.org/10.1017/S0022029919000761CrossRefGoogle ScholarPubMed
Taverna, F, Negri, A, Piccinini, R, Zecconi, A, Nonnis, S, Ronchi, S and Tedeschi, G (2007) Characterization of cell wall associated proteins of a Staphylococcus aureus isolated from bovine mastitis case by a proteomic approach. Veterinary Microbiology 119(2), 240247.10.1016/j.vetmic.2006.09.007CrossRefGoogle ScholarPubMed
Trapanese, L, Bifulco, G, Macchio, AC, Aragona, F, Purrone, S, Campanile, G and Salzano, A (2025) Precision Livestock Farming applied to the dairy sector: 50 years of history with a text mining and topic analysis approach. Smart Agricultural Technology 10, 100827.10.1016/j.atech.2025.100827CrossRefGoogle Scholar
Trovó Fabiano, TL, Lemos, MV and Givisiez, PE (2005) Fluorescent amplified fragment length polymorphism genotyping of human and animal Staphylococcus aureus isolates from dairy farms with manual milking. Veterinary Microbiology 109(1-2), 5763. https://doi.org/10.1016/j.vetmic.2005.03.009CrossRefGoogle ScholarPubMed
Vailati-Riboni, M, Palombo, V and Loor, JJ (2017) What are omics sciences? Periparturient Diseases of Dairy Cows: a Systems Biology Approach, 17. Cham: Springer International Publishing.Google Scholar
Vasco, KA, Hansen, ZA, Schilmiller, AL, Bowcutt, B, Carbonell, SL, Ruegg, PL, Quinn, RA, Zhang, L and Manning, SD (2024) Untargeted metabolomics and metagenomics reveal signatures for intramammary ceftiofur treatment and lactation stage in the cattle hindgut. Frontiers in Molecular Biosciences 11, 1364637.10.3389/fmolb.2024.1364637CrossRefGoogle ScholarPubMed
Vautor, E, Cockfield, J, Le Marechal, C, Le Loir, Y, Chevalier, M, Robinson, DA, Thiery, R and Lindsay, J (2009) Difference in virulence between Staphylococcus aureus isolates causing gangrenous mastitis versus subclinical mastitis in a dairy sheep flock. Veterinary Research 40(6), 56.10.1051/vetres/2009039CrossRefGoogle Scholar
Vázquez-Fresno, R, Llorach, R, Marinic, J, Tulipani, S, Garcia-Aloy, M, Espinosa-Martos, I, Jiménez, E, Rodríguez, JM and Andres-Lacueva, C (2014) Urinary metabolomic fingerprinting after consumption of a probiotic strain in women with mastitis. Pharmacological Research 87, 160165. https://doi.org/10.1016/j.phrs.2014.05.010CrossRefGoogle ScholarPubMed
Vidal Amaral, JR, Jucá Ramos, RT, Almeida Araújo, F, Bentes Kato, R, Figueira Aburjaile, F, de Castro Soares, S, Góes-Neto, A, Matiuzzi da Costa, M, Azevedo, V, Brenig, B, de Oliveira S, S and Soares Rosado, A (2022) Bacteriocin producing Streptococcus agalactiae strains isolated from bovine mastitis in Brazil. Microorganisms. https://doi.org/10.3390/microorganisms10030588CrossRefGoogle ScholarPubMed
Vidal, M, Cusick Michael, E and Barabási, A-L (2011) Interactome networks and human disease. Cell 144(6), 986998. https://doi.org/10.1016/j.cell.2011.02.016CrossRefGoogle ScholarPubMed
Voelkerding, KV, Dames, SA and Durtschi, JD (2009) Next-Generation Sequencing: from basic research to diagnostics. Clinical Chemistry 55(4), 641658. https://doi.org/10.1373/clinchem.2008.112789CrossRefGoogle ScholarPubMed
Wang, M, Liang, Y, Ibeagha-Awemu, EM, Li, M, Zhang, H, Chen, Z, Sun, Y, Karrow, NA, Yang, Z and Mao, Y (2020) Genome-Wide DNA Methylation analysis of mammary gland tissues from Chinese Holstein cows with staphylococcus aureus induced mastitis. Frontiers in Genetics 11, 550515.10.3389/fgene.2020.550515CrossRefGoogle ScholarPubMed
Wang, R, Li, L, Huang, Y, Luo, F, Liang, W, Gan, X, Huang, T, Lei, A, Chen, M and Chen, L (2015) Comparative genome analysis identifies two large deletions in the genome of highly-passaged attenuated Streptococcus agalactiae strain YM001 compared to the parental pathogenic strain HN016. BMC Genomics 16(1), 897. https://doi.org/10.1186/s12864-015-2026-yCrossRefGoogle Scholar
Wang, X, Fei, Y, Shao, Y, Liao, Q, Meng, Q, Chen, R and Deng, L (2024) Transcriptome analysis reveals immune function-related mRNA expression in donkey mammary glands during four developmental stages. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 49, 101169. https://doi.org/10.1016/j.cbd.2023.101169Google ScholarPubMed
Wang, Z, Gerstein, M and Snyder, M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics 10(1), 5763. https://doi.org/10.1038/nrg2484CrossRefGoogle ScholarPubMed
Wasinger, VC, Cordwell, SJ, Cerpa‐Poljak, A, Yan, JX, Gooley, AA, Wilkins, MR, Duncan, MW, Harris, R, Williams, KL and Humphery‐Smith, I (1995) Progress with gene‐product mapping of the Mollicutes: mycoplasma genitalium. Electrophoresis 16(1), 10901094.10.1002/elps.11501601185CrossRefGoogle ScholarPubMed
White, RT, Bakker, S, Burton, M, Castro, ML, Couldrey, C, Dyet, K, Eustace, A, Harland, C, Hutton, S and Macartney-Coxson, D (2024) Rapid identification and subsequent contextualization of an outbreak of methicillin-resistant Staphylococcus aureus in a neonatal intensive care unit using nanopore sequencing. Microbial Genomics 10(7), 001273.10.1099/mgen.0.001273CrossRefGoogle Scholar
Wild, CP (2005) Complementing the Genome with an ‘Exposome’: the Outstanding Challenge of Environmental Exposure Measurement in Molecular Epidemiology. Cancer Epidemiology, Biomarkers & Prevention 14(8), 18471850. https://doi.org/10.1158/1055-9965.EPI-05-0456CrossRefGoogle ScholarPubMed
Xu, S, Liu, Y, Gao, J, Zhou, M, Yang, J, He, F, Kastelic, JP, Deng, Z and Han, B (2021) Comparative genomic analysis of Streptococcus dysgalactiae subspecies dysgalactiae Isolated from bovine mastitis in China. Frontiers in Microbiology 12, 751863.10.3389/fmicb.2021.751863CrossRefGoogle ScholarPubMed
Yalamanchili, HB, Kho, SJ and Raymer, ML (2017) Latent dirichlet allocation for classification using gene expression data. In: 2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE). 10.1109/BIBE.2017.00-81CrossRefGoogle Scholar
Yang, F, Chen, F, Li, L, Yan, L, Badri, T, Lv, C, Yu, D, Zhang, M, Jang, X and Li, J (2019) Three novel players: PTK2B, SYK, and TNFRSF21 were identified to be involved in the regulation of bovine mastitis susceptibility via GWAS and post-transcriptional analysis. Frontiers in Immunology 10, 1579.10.3389/fimmu.2019.01579CrossRefGoogle ScholarPubMed
Yang, K and Han, X (2016) Lipidomics: techniques, applications, and outcomes related to biomedical sciences. Trends in Biochemical Sciences 41(11), 954969. https://doi.org/10.1016/j.tibs.2016.08.010CrossRefGoogle ScholarPubMed
Yang, Y, Higgins Catherine, H, Rehman, I, Galvao Klibs, N, Brito Ilana, L, Bicalho Marcela, L, Song, J, Wang, H and Bicalho Rodrigo, C (2019) Genomic diversity, virulence, and antimicrobial resistance of Klebsiella pneumoniae strains from cows and humans. Applied and Environmental Microbiology 85(6), e0265402618. https://doi.org/10.1128/AEM.02654-18CrossRefGoogle ScholarPubMed
Ying, YT, Yang, J, Tan, X, Liu, R, Zhuang, Y, Xu, JX and Ren, WJ (2021) Escherichia coli and Staphylococcus aureus differentially regulate Nrf2 pathway in bovine mammary epithelial cells: relation to distinct innate immune response. Cells 10(12). https://doi.org/10.3390/cells10123426CrossRefGoogle ScholarPubMed
Zaatout, N, Ayachi, A, Kecha, M and Kadlec, K (2019) Identification of staphylococci causing mastitis in dairy cattle from Algeria and characterization of Staphylococcus aureus. Journal of Applied Microbiology 127(5), 13051314. https://doi.org/10.1111/jam.14402CrossRefGoogle ScholarPubMed
Zhang, H, Jiang, H, Fan, Y, Chen, Z, Li, M, Mao, Y, Karrow, NA, Loor, JJ, Moore, S and Yang, Z (2018) Transcriptomics and iTRAQ-proteomics analyses of bovine mammary tissue with Streptococcus agalactiae-Induced mastitis. Journal of Agricultural and Food Chemistry 66(42), 1118811196. https://doi.org/10.1021/acs.jafc.8b02386CrossRefGoogle ScholarPubMed
Zhu, J, Wu, J, Liang, Z, Mo, C, Qi, T, Liang, S, Lian, T, Qiu, R, Yu, X, Tang, X and Wu, B (2022) Interactions between the breast tissue microbiota and host gene regulation in nonpuerperal mastitis. Microbes and Infection 24(3), 104904. https://doi.org/10.1016/j.micinf.2021.104904CrossRefGoogle Scholar
Supplementary material: File

Esener supplementary material

Esener supplementary material
Download Esener supplementary material(File)
File 3.4 MB