Published online by Cambridge University Press: 14 July 2016
In this paper we find the waiting time distribution in the transient domain and the busy period distribution of the GI G/1 queue. We formulate the problem as a two-dimensional Lindley process and then transform it to a Hilbert factorization problem. We achieve the solution of the factorization problem for the GI/R/1, R/G/1 queues, where R is the class of distributions with rational Laplace transforms. We obtain simple closed-form expressions for the Laplace transforms of the waiting time distribution and the busy period distribution. Furthermore, we find closed-form formulae for the first two moments of the distributions involved.
The research of Dr Bertsimas was partially supported by grants from the Leaders for Manufacturing program at MIT and from Draper Laboratory.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.