Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T14:52:18.811Z Has data issue: false hasContentIssue false

A strong law and a central limit theorem for controlled Galton-Watson processes

Published online by Cambridge University Press:  14 July 2016

Daniel Pierre Loti Viaud*
Affiliation:
Université Paris VI
*
Postal address: L.S.T.A., T.45–55, E.3, Boite 158, Université Paris VI, 4, place Jussieu, 75252 Paris Cedex 05, France.

Abstract

Through the study of a simple embedded martingale we obtain an extension of the Kesten–Stigum theorem and prove a central limit theorem for controlled Galton-Watson processes.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 1994 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asmussen, S. and Hering, H. (1983) Branching Processes. Birkhäuser, Boston.CrossRefGoogle Scholar
Fujimagari, T. (1976) Controlled Galton-Watson process and its asymptotic behaviour. Kodai Math. Sem. Rep. 27, 1118.CrossRefGoogle Scholar
Hall, P. and Heyde, C. C. (1980) Martingale Limit Theory and Its Application. Academic Press, San Diego.Google Scholar
Keller, G., Kersting, G. and Rösler, U. (1987) On the asymptotic behaviour of discrete time stochastic growth processes. Ann. Prob. 15, 305343.CrossRefGoogle Scholar
Kersting, G. (1992) A law of large numbers for stochastic difference equations. Stoch. Proc. Appl. 40, 113.CrossRefGoogle Scholar
Kesten, H. (1972) Limit theorems for stochastic growth models I and II. Adv. Appl. Prob. 4, 193232, 393-428.CrossRefGoogle Scholar
Klebaner, F. C. (1984a) Geometric rate of growth in population-size-dependent branching processes. J. Appl. Prob. 21, 4049.CrossRefGoogle Scholar
Klebaner, F. C. (1984b) On population-size-dependent branching processes. Adv. Appl. Prob. 16, 3055.CrossRefGoogle Scholar
Klebaner, F. C. (1985) A limit theorem for population-size-dependent branching processes. J. Appl. Prob. 22, 4857.CrossRefGoogle Scholar
Küster, P. (1985) Asymptotic growth of controlled Galton-Watson processes. Ann. Prob. 13, 11571178.CrossRefGoogle Scholar
Pierre Loti Viaud, D. (1991) Grandes déviations pour une famille de processus de Galton-Watson dépendant de l'effectif de la population. Ann. Inst. H. Poincaré 27, 141179.Google Scholar
Von Bahr, B. and Esseen, C. G. (1965) Inequalities for the rth absolute moment of a sum of random variables, 1 ≦ r ≦ 2. Ann. Math. Statist. 36, 299303.CrossRefGoogle Scholar
Zubkov, A. M. (1974) Analogies between Galton-Watson processes and φ-branching processes. Theory Prob. Appl. 19, 309331.CrossRefGoogle Scholar