Hostname: page-component-76c49bb84f-xk4dl Total loading time: 0 Render date: 2025-07-07T20:54:20.074Z Has data issue: false hasContentIssue false

Rates for the SLLN for long-memory and heavy-tailed processes

Published online by Cambridge University Press:  24 June 2025

Samir Ben Hariz*
Affiliation:
Université du Maine
Salim Bouzebda*
Affiliation:
Université de technologie de Compiègne
*
*Postal address: Laboratoire de Statistique et Processus, Département de Mathématiques, Université du Maine, Av. Olivier Messiaen BP 535 72017 Le Mans CEDEX, France. Email: Samir.Ben_Hariz@univ-lemans.fr
**Postal address: Université de technologie de Compiègne, LMAC (Laboratory of Applied Mathematics of Compiègne), 57 Avenue de Landshut CS 60319 60203 Compiègne CEDEX, France. Email: Salim.Bouzebda@utc.fr

Abstract

The present paper develops a unified approach when dealing with short- or long-range dependent processes with finite or infinite variance. We are concerned with the convergence rate in the strong law of large numbers (SLLN). Our main result is a Marcinkiewicz–Zygmund law of large numbers for $S_{n}(f)= \sum_{i=1}^{n}f(X_{i})$, where $\{X_i\}_{i\geq 1}$ is a real stationary Gaussian sequence and $f(\!\cdot\!)$ is a measurable function. Key technical tools in the proofs are new maximal inequalities for partial sums, which may be useful in other problems. Our results are obtained by employing truncation alongside new maximal inequalities. The result can help to differentiate the effects of long memory and heavy tails on the convergence rate for limit theorems.

Information

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alvarez-Andrade, S. and Bouzebda, S. (2014). Asymptotic results for hybrids of empirical and partial sums processes. Statist. Papers 55, 11211143.10.1007/s00362-013-0557-3CrossRefGoogle Scholar
Alvarez-Andrade, S. and Bouzebda, S. (2018). Almost sure central limit theorem for the hybrid process. Statistics 52, 519532.10.1080/02331888.2018.1425864CrossRefGoogle Scholar
Arcones, M. A. (1994). Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors. Ann. Prob. 22, 22422274.10.1214/aop/1176988503CrossRefGoogle Scholar
Arcones, M. A. (2000). Distributional limit theorems over a stationary Gaussian sequence of random vectors. Stoch. Process. Appl. 88, 135159.10.1016/S0304-4149(99)00122-2CrossRefGoogle Scholar
Baum, L. E. and Katz, M. (1965). Convergence rates in the law of large numbers. Trans. Amer. Math. Soc. 120, 108123.10.1090/S0002-9947-1965-0198524-1CrossRefGoogle Scholar
Ben Hariz, S. (1999). Limit theorems for weakly and strongly dependent sequences: Statistical applications. PhD dissertation, Université du Paris Sud, Orsay.Google Scholar
Ben Hariz, S. (2002). Limit theorems for the non-linear functional of stationary Gaussian processes. J. Multivariate Anal. 80, 191216.10.1006/jmva.2001.1986CrossRefGoogle Scholar
Beran, J., Feng, Y., Ghosh, S. and Kulik, R. (2013). Long-Memory Processes: Probabilistic Properties and Statistical Methods. Springer, Heidelberg.10.1007/978-3-642-35512-7CrossRefGoogle Scholar
Billingsley, P. (1999). Convergence of Probability Measures, 2nd edn (Wiley Series in Probability and Statistics). John Wiley, New York.10.1002/9780470316962CrossRefGoogle Scholar
Birkel, T. (1988). A note on the strong law of large numbers for positively dependent random variables. Statist. Prob. Lett. 7, 1720.10.1016/0167-7152(88)90080-6CrossRefGoogle Scholar
Breuer, P. and Major, P. (1983). Central limit theorems for nonlinear functionals of Gaussian fields. J. Multivariate Anal. 13, 425441.10.1016/0047-259X(83)90019-2CrossRefGoogle Scholar
Buchsteiner, J. (2018). The function-indexed sequential empirical process under long-range dependence. Bernoulli 24, 21542175.10.3150/17-BEJ924CrossRefGoogle Scholar
Dedecker, J. and Merlevède, F. (2007). Convergence rates in the law of large numbers for Banach-valued dependent variables. Teor. Veroyat. Primen. 52, 562587.10.4213/tvp78CrossRefGoogle Scholar
Dobrushin, R. L. and Major, P. (1979). Non-central limit theorems for nonlinear functionals of Gaussian fields. Z. Wahrscheinlichkeitsth. 50, 2752.10.1007/BF00535673CrossRefGoogle Scholar
Fazekas, I. and Klesov, O. (2000). A general approach to the strong laws of large numbers. Teor. Veroyat. Primen. 45, 568583.10.4213/tvp486CrossRefGoogle Scholar
Gut, A. and Stadtmüller, U. (2010). On the strong law of large numbers for delayed sums and random fields. Acta Math. Hungar. 129, 182203.10.1007/s10474-010-9272-xCrossRefGoogle Scholar
Hechner, F. and Heinkel, B. (2010). The Marcinkiewicz–Zygmund LLN in Banach spaces: A generalized martingale approach. J. Theoret. Prob. 23, 509522.10.1007/s10959-009-0212-zCrossRefGoogle Scholar
Houdré, C. (1995). On the almost sure convergence of series of stationary and related nonstationary variables. Ann. Prob. 23, 12041218.10.1214/aop/1176988180CrossRefGoogle Scholar
Hu, Y., Nualart, D., Tindel, S. and Xu, F. (2015). Density convergence in the Breuer–Major theorem for Gaussian stationary sequences. Bernoulli 21, 23362350.10.3150/14-BEJ646CrossRefGoogle Scholar
Ivanov, A. V., Leonenko, N., Ruiz-Medina, M. D. and Savich, I. N. (2013). Limit theorems for weighted nonlinear transformations of Gaussian stationary processes with singular spectra. Ann. Prob. 41, 10881114.10.1214/12-AOP775CrossRefGoogle Scholar
Jirak, M. (2017). On weak invariance principles for partial sums. J. Theoret. Prob. 30, 703728.10.1007/s10959-016-0670-zCrossRefGoogle Scholar
Kratz, M. F. and León, J. R. (2001). Central limit theorems for level functionals of stationary Gaussian processes and fields. J. Theoret. Prob. 14, 639672.10.1023/A:1017588905727CrossRefGoogle Scholar
Kulik, R. and Soulier, P. (2012). Limit theorems for long-memory stochastic volatility models with infinite variance: Partial sums and sample covariances. Adv. Appl. Prob. 44, 11131141.10.1239/aap/1354716591CrossRefGoogle Scholar
Kulik, R. and Soulier, P. (2020). Heavy-Tailed Time Series (Springer Series in Operations Research and Financial Engineering). Springer, New York.10.1007/978-1-0716-0737-4CrossRefGoogle Scholar
Louhichi, S. and Soulier, P. (2000). Marcinkiewicz–Zygmund strong laws for infinite variance time series. Statist. Inference Stoch. Process. 3, 3140.10.1023/A:1009985318510CrossRefGoogle Scholar
Marcinkiewicz, J. and Zygmund, A. (1937). Sur les fonctions independantes. Fundam. Math. 29, 6090.10.4064/fm-29-1-60-90CrossRefGoogle Scholar
Móricz, F. A., Serfling, R. J. and Stout, W. F. (1982). Moment and probability bounds with quasisuperadditive structure for the maximum partial sum. Ann. Prob. 10, 10321040.10.1214/aop/1176993724CrossRefGoogle Scholar
Rio, E. (1995). A maximal inequality and dependent Marcinkiewicz–Zygmund strong laws. Ann. Prob. 23, 918937.10.1214/aop/1176988295CrossRefGoogle Scholar
Shao, Q. M. (1995). Maximal inequalities for partial sums of $\rho$ -mixing sequences. Ann. Prob. 23, 948965.10.1214/aop/1176988297CrossRefGoogle Scholar
Shuhe, H. and Ming, H. (2006). A general approach rate to the strong law of large numbers. Statist. Prob. Lett. 76, 843851.10.1016/j.spl.2005.10.016CrossRefGoogle Scholar
Szewczak, Z. (2011). On Marcinkiewicz–Zygmund laws. J. Math. Anal. Appl. 375, 738744.10.1016/j.jmaa.2010.10.011CrossRefGoogle Scholar
Taqqu, M. S. (1979). Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrscheinlichkeitsth. 50, 5383.10.1007/BF00535674CrossRefGoogle Scholar