Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T01:34:03.735Z Has data issue: false hasContentIssue false

Plane polygons revisited

Published online by Cambridge University Press:  14 July 2016

Abstract

A method used by electrical engineers to analyse polyphase alternating current systems suggests a generalisation to arbitrary plane polygons of a theorem on triangles nowadays known, for obscure reasons, as ‘Napoleon's Theorem': the centroids of equilateral triangles erected on the sides of an arbitrary triangle form the vertices of an equilateral triangle. The generalisation to other polygons uses a construction first studied by C.-A. Laisant in 1877; results of Jesse Douglas (1940) and the author (1941) are re-derived by means of the elementary algebra of finite-dimensional vector spaces over the field of complex numbers.

Type
Part 2 — Geometry and Geometrical Probability
Copyright
Copyright © 1982 Applied Probability Trust 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Baker, H. F. (1942) A remark on polygons. J. London Math. Soc. 17, 162164.CrossRefGoogle Scholar
[2] Cavallaro, V. G. (1938) Sur les segments toricelliens. Mathesis 52, 290293.Google Scholar
[3] Douglas, J. (1940) Geometry of polygons in the complex plane. J. Math. Phys. 19, 93130.Google Scholar
[4] Douglas, J. (1940) On linear polygon transformations. Bull. Amer. Math. Soc. 46, 551560.Google Scholar
[5] Fischer, W. (1863) Ein geometrischer Satz. Arch. Math. Phys. 40, 460462.Google Scholar
[6] Halmos, P. R. (1958) Finite-Dimensional Vector Spaces , 2nd edn. Van Nostrand, Princeton, NJ. (Reprinted (1974), Springer-Verlag, New York.).Google Scholar
[7] Laisant, C.-A. (1877) Sur quelques propriétés des polygones. Assoc. française pour l'avancement des sciences, Compte rendu , 142154.Google Scholar
[8] Laisant, C.-A. (1887) Théorie et applications des équipollences. Gauthiers-Villars, Paris.Google Scholar
[9] Neumann, B. H. (1941) Some remarks on polygons. J. London Math. Soc. 16, 230245.Google Scholar
[10] Neumann, B. H. (1942) A remark on polygons. J. London Math. Soc. 17, 165166.Google Scholar
[11] Neumann, R. (1911) Geometrische Untersuchung eines Ausgleichstransformators für unsymmetrische Drehstromsysteme. Elektrotechnik und Maschinenbau 39, 747751.Google Scholar
[12] Neumann, R. (1939) Symmetrical Component Analysis of Unsymmetrical Polyphase Systems. Pitman, London.Google Scholar