Published online by Cambridge University Press: 21 February 2023
We study an optimal reinsurance problem for a diffusion model, in which the drift of the claim follows an Ornstein–Uhlenbeck process. The aim of the insurer is to maximize the expected exponential utility of its terminal wealth. We consider two cases: full information and partial information. Full information occurs when the insurer directly observes the drift; partial information occurs when the insurer observes only its claims. By applying stochastic control and by solving the corresponding Hamilton–Jacobi–Bellman equations, we find the value function and the optimal reinsurance strategy under both full and partial information. We determine a relationship between the value function and reinsurance strategy under full information with the value function and reinsurance strategy under partial information.