Hostname: page-component-784d4fb959-57n77 Total loading time: 0 Render date: 2025-07-17T11:59:43.350Z Has data issue: false hasContentIssue false

Optimal multiple stopping problem with irregular reward

Published online by Cambridge University Press:  14 July 2025

Hanwu Li*
Affiliation:
Shandong University
*
*Postal address: Research Center for Mathematics and Interdisciplinary Sciences, Binhai Rd 72, Qingdao, China; Frontiers Science Center for Nonlinear Expectations (Ministry of Education), Binhai Rd 72, Qingdao, China. Email: lihanwu@sdu.edu.cn

Abstract

In this paper we study the optimal multiple stopping problem with weak regularity for the reward, where the reward is given by a set of random variables indexed by stopping times. When the reward family is upper semicontinuous in expectation along stopping times, we construct the optimal multiple stopping strategy using the auxiliary optimal single stopping problems. We also obtain the corresponding results when the reward is given by a progressively measurable process.

Information

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ben Latifa, I., Bonnans, J. F. and Mnif, M. (2011). Optimal multiple stopping problem and financial applications. Research Report RR-7807, INRIA. Available at https://inria.hal.science/hal-00642919/PDF/RR-7807.pdfhal-00642919.Google Scholar
Borovkova, S. and Schmeck, M. D. (2017). Electricity price modeling with stochastic time change. Energy Econom. 63, 5165.10.1016/j.eneco.2017.01.002CrossRefGoogle Scholar
Bouzguenda Zeghal, A. and Mnif, M. (2006). Optimal multiple stopping and valuation of swing options in Lévy models. Internat. J. Theor. Appl. Finance. 9, 12671297.10.1142/S0219024906004037CrossRefGoogle Scholar
Carmona, R. and Touzi, N. (2008). Optimal multiple stopping and valuation of swing options. Math. Finance 18, 239268.10.1111/j.1467-9965.2007.00331.xCrossRefGoogle Scholar
El Karoui, N. (1981). Les aspects probabilistes du controle stochastique. In Ecole d’Eté de Probabilités de Saint-Flour IX (Lecture Notes in Mathematics 876), pp. 73–238. Springer, Berlin.10.1007/BFb0097499CrossRefGoogle Scholar
Karatzas, I. and Shreve, S. E. (1998). Methods of Mathematical Finance (Applications of Mathematics 39). Springer, New York.Google Scholar
Kobylanski, M. and Quenez, M. C. (2012). Optimal stopping time problem in a general framework. Electron. J. Prob. 17, 128.10.1214/EJP.v17-2262CrossRefGoogle Scholar
Kobylanski, M., Quenez, M. C. and Rouy-Mironescu, E. (2011). Optimal multiple stopping time problem. Ann. Appl. Prob. 21, 13641399.10.1214/10-AAP727CrossRefGoogle Scholar
Li, H. (2022). Optimal multiple stopping problems under g-expectation. Appl. Math. Optim. 85, 17.10.1007/s00245-022-09857-0CrossRefGoogle Scholar
Li, H. (2023). Optimal multiple stopping problem under nonlinear expectation. Adv. Appl. Prob. 55, 151178.10.1017/apr.2022.15CrossRefGoogle Scholar
Peskir, G. and Shiryaev, A. N. (2006). Optimal Stopping and Free-Boundary Problems. Birkhäuser.Google Scholar
Scheutzow, M. (2019). BMS Basic Course Stochastic Processes II/Wahrscheinlichkeitstheorie III. Google Scholar