Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T23:40:01.692Z Has data issue: false hasContentIssue false

On Weiner's Proof of the Palásti Conjecture

Published online by Cambridge University Press:  14 July 2016

Motoo Hori*
Affiliation:
Tokyo Institute of Technology
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Letters to the Editor: Some Comments on a Paper by H. J. Weiner
Copyright
Copyright © Applied Probability Trust 1979 

References

Akeda, Y. and Hori, M. (1975) Numerical test of Palásti's conjecture on two-dimensional random packing density. Nature (London) 254, 318319.Google Scholar
Akeda, Y. and Hori, M. (1976) On random sequential packing in two and three dimensions. Biometrika 63, 361366.Google Scholar
Blaisdell, B. E. and Solomon, H. (1970) On random sequential packing in the plane and a conjecture of Palásti. J. Appl. Prob. 7, 667698.Google Scholar
Dvoretzky, A. and Robbins, H. (1964) On the ‘parking’ problem. Magy. Tudom. Akad. Mat. Kut. Intéz. Közl. 9, 209225.Google Scholar
Ney, P. E. (1962) A random interval filling problem. Ann. Math. Statist. 33, 702718.Google Scholar
Pálasti, I. (1960) On some random space filling problems. Magy. Tudom. Akad. Mat. Kut. Intéz. Közl. 5, 353360.Google Scholar
Rényi, A. (1958) On a one-dimensional problem concerning random space filling (in Hungarian). Magy. Tudom. Akad. Math. Kut. Intéz. Közl. 3, 109127.Google Scholar
Solomon, H. (1967) Random packing density. Proc. 5th Berkeley Symp. Math. Statist. Prob. 3, 119134.Google Scholar
Weiner, H. J. (1978) Sequential random packing in the plane. J. Appl. Prob. 15, 803814.Google Scholar