Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T10:00:54.801Z Has data issue: false hasContentIssue false

On the Markov Transition Kernels for First Passage Percolation on the Ladder

Published online by Cambridge University Press:  14 July 2016

Eckhard Schlemm*
Affiliation:
Technische Universität München
*
Postal address: TUM Institute for Advanced Study & Zentrum Mathematik, Technische Universität München, Boltzmannstrasse 3, 85748 Garching bei München, Germany. Email address: schlemm@ma.tum.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider the first passage percolation problem on the random graph with vertex set N x {0, 1}, edges joining vertices at a Euclidean distance equal to unity, and independent exponential edge weights. We provide a central limit theorem for the first passage times ln between the vertices (0, 0) and (n, 0), thus extending earlier results about the almost-sure convergence of ln / n as n → ∞. We use generating function techniques to compute the n-step transition kernels of a closely related Markov chain which can be used to explicitly calculate the asymptotic variance in the central limit theorem.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 2011 

References

[1] Abramowitz, M. and Stegun, I. A. (eds) (1992). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York.Google Scholar
[2] Ahlberg, D. (2009). Asymptotics of first-passage percolation on 1-dimensional graphs. Preprint. Department of Mathematical Sciences, Chalmers University of Technology and Göteborg University.Google Scholar
[3] Aldous, D., Lovász, L. and Winkler, P. (1997). Mixing times for uniformly ergodic Markov chains. Stoch. Process. Appl. 71, 165185.CrossRefGoogle Scholar
[4] Altmann, M. (1993). Reinterpreting network measures for models of disease transmission. Social Networks 15, 117.CrossRefGoogle ScholarPubMed
[5] Bhamidi, S., van der Hofstad, R. and Hooghiemstra, G. (2010). {First passage percolation on random graphs with finite mean degrees}. Ann. Appl. Prob. 20, 19071907.Google Scholar
[6] Chatterjee, S. and Dey, P. S. (2009). Central limit theorem for first-passage percolation time across thin cylinders. Preprint. Available at http://arxiv.org/abs/0911.5702v2.Google Scholar
[7] Chen, X. (1999). Limit theorems for functionals of ergodic Markov chains with general state space. Mem. Amer. Math. Soc. 139, 203 pp.Google Scholar
[8] Flaxman, A., Gamarnik, D. and Sorkin, G. (2006). First-passage percolation on a width-2 strip and the path cost in a VCG auction. In Internet and Network Economics (Lecture Notes Comput. Sci. 4286), Springer, Berlin, pp. 99111.CrossRefGoogle Scholar
[9] Graham, R. L., Grötschel, M. and Lovász, L. (eds) (1995). Handbook of Combinatorics, Vol. 2. North-Holland, Amsterdam.Google Scholar
[10] Grimmett, G. and Kesten, H. (1984). First-passage percolation, network flows and electrical resistances. Z. Wahrscheinlichkeitsth. 66, 335366.CrossRefGoogle Scholar
[11] Hammersley, J. M. and Welsh, D. J. A. (1965). First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theory. In Bernouli, Bayes, Laplace. Anniversary Volume, Springer, New York, pp. 61110.Google Scholar
[12] Kesten, H. (1987). Percolation theory and first-passage percolation. Ann. Prob. 15, 12311271.Google Scholar
[13] Nummelin, E. and Tuominen, P. (1982). Geometric ergodicity of Harris recurrent Markov chains with applications to renewal theory. Stoch. Process. Appl. 12, 187202.Google Scholar
[14] Renlund, H. (2010). First-passage percolation with exponential times on a ladder. Combinatorics Prob. Comput. 19, 593601.Google Scholar
[15] Schlemm, E. (2009). {First-passage percolation rates on width-two stretches with exponential link weights}. Electron. Commun. Prob. 140, 424434.Google Scholar
[16] Seppäläinen, T. (1998). Exact limiting shape for a simplified model of first-passage percolation on the plane. Ann. Prob. 26, 12321250.Google Scholar
[17] Smythe, R. T. and Wierman, J. C. (1978). First-Passage Percolation on the Square Lattice (Lecture Notes Math. 671). Springer, Berlin.Google Scholar
[18] Sood, V., Redner, S. and ben Avraham, D. (2005). First-passage properties of the Erdős-Renyi random graph. J. Phys. A 38, 109123.CrossRefGoogle Scholar
[19] Van der Hofstad, R., Hooghiemstra, G. and Van Mieghem, P. (2001). First-passage percolation on the random graph. Prob. Eng. Inf. Sci. 15, 225237.Google Scholar
[20] Wilf, H. S. (2006). Generatingfunctionology, 3rd edn. A K Peters, Wellesley, MA.Google Scholar