Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T01:52:36.390Z Has data issue: false hasContentIssue false

On the foundations of multivariate heavy-tail analysis

Published online by Cambridge University Press:  14 July 2016

Sidney Resnick*
Affiliation:
School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY 14853, USA. Email address: sid@orie.cornell.edu

Abstract

Univariate heavy-tailed analysis rests on the analytic notion of regularly varying functions. For multivariate heavy-tailed analysis, reliance on functions is awkward because multivariate distribution functions are not natural objects for many purposes and are difficult to manipulate. An approach based on vague convergence of measures makes the differences between univariate and multivariate analysis evaporate. We survey the foundations of the subject and discuss statistical attempts to assess dependence of large values. An exploratory technique is applied to exchange rate return data and shows clear differences in the dependence structure of large values for the Japanese Yen versus German Mark compared with the French Franc versus the German Mark.

Type
Part 4. Heavy-tail analysis
Copyright
Copyright © Applied Probability Trust 2004 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Basrak, B. (2000). The sample autocorrelation function of non-linear time series. Doctoral Thesis, Rijksuni-versiteit Groningen.Google Scholar
[2] Basrak, B., Davis, R. A. and Mikosch, T. (2002). A characterization of multivariate regular variation. Ann. Appl. Prob. 12, 908920.CrossRefGoogle Scholar
[3] Billingsley, P. (1999). Convergence of Probability Measures , 2nd edn. John Wiley, New York.CrossRefGoogle Scholar
[4] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). Regular Variation. Cambridge University Press.CrossRefGoogle Scholar
[5] Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. J. Econometrics 31,307327.CrossRefGoogle Scholar
[6] Bollerslev, T., Chow, R. Y. and Kroner, K. F. (1992). ARCH modeling in finance: a review of the theory and empirical evidence. J. Econometrics 52, 559.CrossRefGoogle Scholar
[7] Crovella, M. and Bestavros, A. (1995). Explaining world wide web traffic self-similarity. Preprint, TR-95-015, Boston University. Available at http://wwww.cs.bu.edu/faculty/crovella/.Google Scholar
[8] Crovella, M. and Bestavros, A. (1996). Self-similarity in world wide web traffic: evidence and possible causes. Performance Evaluation Rev. 24, 160169.CrossRefGoogle Scholar
[9] Crovella, M. and Bestavros, A. (1997). Self-similarity in world wide web traffic: evidence and possible causes. IEEE/ACM Trans. Networking 5, 835846.CrossRefGoogle Scholar
[10] Crovella, M., Bestavros, A. and Taqqu, M. S. (1999). Heavy-tailed probability distributions in the world wide web. In A Practical Guide to Heavy Tails: Statistical Techniques and Applications , eds Taqqu, M. S., Adler, R. and Feldman, R., Birkhäuser, Boston, MA, pp. 326.Google Scholar
[11] Csörgo, S. and Mason, D. (1985). Central limit theorems for sums of extreme values. Math. Proc. Camb. Phil. Soc. 98, 547558.CrossRefGoogle Scholar
[12] Csörgo, S, Deheuvels, P. and Mason, D. (1985). Kernel estimates for the tail index of a distribution. Ann. Statist. 13, 10501077.CrossRefGoogle Scholar
[13] Cunha, C., Bestavros, A. and Crovella, M. (1995). Characteristics of www client-based traces. Preprint TR-95-010, Boston University. Available at http://www.cs.bu.ede/faculty/crovella/.Google Scholar
[14] Davis, R. A. and Mikosch, T. (1998). The sample autocorrelations of heavy-tailed processes with applications to ARCH. Ann. Statist. 26, 20492080.CrossRefGoogle Scholar
[15] De Haan, L. and Omey, E. (1984). Integrals and derivatives of regularly varying functions in Rd and domains of attraction of stable distributions, II. Stoch. Process. Appl. 16, 157170.CrossRefGoogle Scholar
[16] De Haan, L. and Resnick, S. I. (1977). Limit theory for multivariate sample extremes. Z. Wahrscheinlichkeitsth. 40, 317337.CrossRefGoogle Scholar
[17] De Haan, L. and Resnick, S. I. (1978/79). Derivatives of regularly varying functions in Rd and domains of attraction of stable distributions. Stoch. Process. Appl. 8, 349355.CrossRefGoogle Scholar
[18] De Haan, L. and Resnick, S. I. (1987). On regular variation of probability densities. Stoch. Process. Appl. 25, 8395.CrossRefGoogle Scholar
[19] De Haan, L. and Resnick, S. I. (1998). On asymptotic normality of the Hill estimator. Stoch. Models 14, 849867.CrossRefGoogle Scholar
[20] De Haan, L., Omey, E. and Resnick, S. (1984). Domains of attraction and regular variation in Rd. J. Multivariate Anal. 14, 1733.CrossRefGoogle Scholar
[21] Drees, H. (1998). Estimating the extreme value index. Doctoral Thesis, University of Cologne.Google Scholar
[22] Drees, H., De Haan, L. and Resnick, S. (2000). How to make a Hill plot. Ann. Statist. 28, 254274.CrossRefGoogle Scholar
[23] Duffy, D. E., Mcintosh, A. A., Rosenstein, M. and Willinger, W. (1993). Analyzing telecommunications traffic data from working common channel signaling subnetworks. In Computing Science and Statistics Interface (Proc. 25th Symp. Interface San Diego, CA), eds Tarter, M. E. and Lock, M. D., pp. 156165.Google Scholar
[24] Einmahl, J., De Haan, L. and Piterbarg, V. (2001). Nonparametric estimation of the spectral measure of an extreme value distribution. Ann. Statist. 29, 14011423.CrossRefGoogle Scholar
[25] Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50, 9871008.CrossRefGoogle Scholar
[26] Finkenstädt, B. and Rootzen, H., (eds) (2003). Extreme Values in Finance, Telecommunications, and the Environment (Proc. 5th SemStat, Sém. Europ. Statist., Gothenburg, 2001). Chapman and Hall/CRC, Boca Raton, FL.CrossRefGoogle Scholar
[27] Geluk, J. L. and De, Haan. L. (1987). Regular Variation, Extensions and Tauberian Theorems (CWI Tract 40). Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam.Google Scholar
[28] Goldie, C. M. (1991). Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Prob. 1, 126166.CrossRefGoogle Scholar
[29] Kesten, H. (1973). Random difference equations and renewal theory for products of random matrices. Acta Math. 131, 207248.CrossRefGoogle Scholar
[30] Crovella, M., Kim, G. and Park, K. (1996). On the relationship between file sizes, transport protocols, and self-similar network traffic. In Proc. 4th Internat. Conf. Network Protocols (ICNP'96) , pp. 171180.Google Scholar
[31] Leland, W. E., Taqqu, M. S., Willinger, W. and Wilson, D. V. (1993). Statistical analysis of high time-resolution ethernet Lan traffic measurements. In Computer Science and Statistics Interface (Proc. 25th Symp. Interface, San Diego, CA), eds Taylor, M. E. and Lock, M. D., pp. 146155.Google Scholar
[32] Mason, D. (1982). Laws of large numbers for sums of extreme values. Ann. Prob. 10, 754764.CrossRefGoogle Scholar
[33] Mason, D. (1988). A strong invariance theorem for the tail empirical process. Ann. Inst. H. Poincaré Prob. Statist. 24, 491506.Google Scholar
[34] Mason, D. and Turova, T. (1994). Weak convergence of the Hill estimator process. In Extreme Value Theory and Applications , eds Galambos, J., Lechner, J., and Simiu, E., Kluwer, Dordrecht, pp. 419432.CrossRefGoogle Scholar
[35] Mikosch, T. (2003). Modeling dependence and tails of financial time series. In Extreme Values in Finance, Telecommunications, and the Environment (SemStat, Gothenburg, 2001), eds Finkenstädt, B. and Rootzén, H., Chapman and Hall/CRC, Boca Raton, FL, pp. 185286.Google Scholar
[36] Reiss, R.-D. and Thomas, M. (2001). Statistical Analysis of Extreme Values , 2nd edn. Birkhäuser, Basel.Google Scholar
[37] Resnick, S. (1971). Tail equivalence and its applications. J. Appl. Prob. 8, 136156.CrossRefGoogle Scholar
[38] Resnick, S. (1986). Point processes, regular variation and weak convergence. Adv. Appl. Prob. 18, 66138.CrossRefGoogle Scholar
[39] Resnick, S. (1987). Extreme Values, Regular Variation and Point Processes. Springer, New York.CrossRefGoogle Scholar
[40] Resnick, S. (1997). Discussion of the Danish data on large fire insurance losses. ASTIN Bull. 27, 139151.CrossRefGoogle Scholar
[41] Resnick, S. (1997). Heavy tail modeling and teletraffic data. Ann. Statist. 25, 18051869.CrossRefGoogle Scholar
[42] Resnick, S. (2003). Modeling data networks. In Extreme Values in Finance, Telecommunications, and the Environment (SemStat, Gothenburg, 2001), eds Finkenstädt, B. and Rootzén, H., Chapman and Hall/CRC, Boca Raton, FL, pp. 287372.Google Scholar
[43] Resnick, S. and StâRicâ, C. (1995). Consistency of Hill's estimator for dependent data. J. Appl. Prob. 32, 139167.CrossRefGoogle Scholar
[44] Resnick, S. and StâRicâ, C. (1997). Asymptotic behavior of Hill's estimator for autoregressive data. Stoch. Models 13, 703723.CrossRefGoogle Scholar
[45] Resnick, S. and Stâricâ, C. (1997). Smoothing the Hill estimator. Adv. Appl. Prob. 29, 271293.CrossRefGoogle Scholar
[46] Resnick, S. and Stâricâ, C. (1998). Tail index estimation for dependent data. Ann. Appl. Prob. 8, 11561183.CrossRefGoogle Scholar
[47] Seneta, E. (1976). Regularly Varying Functions (Lecture Notes Math. 508). Springer, New York.CrossRefGoogle Scholar
[48] Sinha, A. K. (1997). Estimating failure probability when failure is rare: multidimensional case. Doctoral Thesis, Tinbergen Institute, Erasmus University Rotterdam.Google Scholar
[49] Stâricâ, C. (1999). Multivariate extremes for models with constant conditional correlations. J. Empirical Finance 6, 515553.CrossRefGoogle Scholar
[50] Stâricâ, C. (2000). Multivariate extremes for models with constant conditional correlations. In Extremes and Integrated Risk Management , ed Embrechts, P., Risk Books, London, pp. 515553.Google Scholar
[51] Vervaat, W. (1979). On a stochastic difference equation and a representation of non-negative infinitely divisible random variables. Adv. Appl. Prob. 11, 750783.CrossRefGoogle Scholar
[52] Willinger, W., Taqqu, M. S., Leland, M. and Wilson, D. (1995). Self-similarity in high-speed packet traffic: analysis and modelling of ethernet traffic measurements. Statist. Sci. 10, 6785.CrossRefGoogle Scholar
[53] Willinger, W., Taqqu, M. S., Leland, M. and Wilson, D. (1995). Self-similarity through high variability: statistical analysis of ethernet lan traffic at the source level. Comput. Commun. Rev. 25, 100113.CrossRefGoogle Scholar