Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T17:32:42.923Z Has data issue: false hasContentIssue false

Non-uniqueness in probabilistic numerical identification of bacteria

Published online by Cambridge University Press:  14 July 2016

Mats Gyllenberg*
Affiliation:
Luleå University of Technology
Timo Koski*
Affiliation:
Luleå University of Technology
Edwin Reilink*
Affiliation:
University of Twente
Martin Verlaan*
Affiliation:
University of Twente
*
Present address: Department of Applied Mathematics, University of Turku, FIN-20500 Turku, Finland.
∗∗ Postal address: Department of Applied Mathematics, Luleå University of Technology, S-95187 Luleå, Sweden.
∗∗∗ Postal address: Faculty of Applied Mathematics, University of Twente, 7500 AE Enschede, The Netherlands.
∗∗∗ Postal address: Faculty of Applied Mathematics, University of Twente, 7500 AE Enschede, The Netherlands.

Abstract

In this note we point out an inherent difficulty in numerical identification of bacteria. The problem is that of uniqueness of the taxonomic structure or, in mathematical terms, the lack of statistical identifiability of finite mixtures of multivariate Bernoulli probability distributions shown here.

Type
Short Communications
Copyright
Copyright © Applied Probability Trust 1994 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Austin, B. and Priest, F. (1986) Modern Bacterial Taxonomy. Van Nostrand Reinhold, London.Google Scholar
[2] Bascomb, S., Lapage, S. P., Curtis, M. A. and Willcox, W. R. (1973) Identification of bacteria by computer: identification of reference strains. J. Gen. Microbiol. 77, 291315.CrossRefGoogle ScholarPubMed
[3] Blischke, W. R. (1964) Estimating the parameters of mixtures of binomial distributions. J. Amer. Statist. Assoc. 59, 510528.CrossRefGoogle Scholar
[4] Dawson, C. W. and Sneath, P. H. A. (1985) A probability matrix for identification of vibrios. J. Appl. Bacteriol. 58, 407423.CrossRefGoogle ScholarPubMed
[5] Davis, A. W., Atlas, R. M. and Krichevsky, M. I. (1983) Development of probability matrices for identification of Alaskan marine bacteria. Internat. J. Systematic Bacteriol. 33, 803810.Google Scholar
[6] Duda, R. O. and Hart, P. E. (1973) Pattern Classification and Scene Analysis. Wiley, New York.Google Scholar
[7] Dybowski, W. and Franklin, D. A. (1968) Conditional probability and the identification of bacteria. J. Gen. Microbiol. 54, 215229.Google Scholar
[8] Everitt, B. S. and Hand, D. J. (1981) Finite Mixture Distributions. Chapman and Hall, London.CrossRefGoogle Scholar
[9] Gyllenberg, H. G. (1963) A general method for deriving determination schemes for random collections of microbial isolates. Ann. Acad. Sci. Fennicae, Ser. A, IV, Biol. 69, 123.Google Scholar
[10] Gyllenberg, H. G. (1976) Development of reference systems for automatic identification of clinical isolates of bacteria. Arch. Immunol. Therap. Exp. 24, 119.Google ScholarPubMed
[11] Gyllenberg, H. G. (1981) Continuous cumulation of identification matrices. Helsingin Yliopiston Mikrobiologian Laitoksen Julkaisuja, 20/1981.Google Scholar
[12] Gyllenberg, H. G. and Niemelä, T. K. (1975) Basic principles in computer-assisted identification of microorganisms. Chapter 13 in New Approaches to the Identification of Microorganisms, ed. Héden, C.-G. and Illéni, T., Wiley, New York.Google Scholar
[13] Hill, L. R. (1974) Theoretical aspects of numerical identification. Internat. J. Systematic Bacteriol. 24, 494499.Google Scholar
[14] Holmes, B., Pinning, C. A. and Dawson, C. A. (1986) A probability matrix for the identification of Gram-negative, aerobic, nonfermeative bacteria that grow on nutrient agar. J. Gen. Microbiol. 132, 18271842.Google Scholar
[15] Kämpfer, P. and Altwegg, M. (1992) Numerical classification and identification of Aereomonas genospecies. J. Appl. Bacteriol. 72, 341351.CrossRefGoogle Scholar
[16] Kämpfer, P. and Kroppenstedt, R. M. (1991) Probabilistic identification of Streptomycetes using miniaturized physiological tests. J. Gen. Microbiol. 137, 18931902.Google Scholar
[17] Langham, C. D., Williams, S. T., Sneath, P. H. A. and Mortimer, A. M. (1989) New probability matrices for identification of Streptomyces. J. Gen. Microbiol. 135, 121133.Google Scholar
[18] Lapage, S. P., Bascomb, S., Willcox, W. R. and Curtis, M. A. (1970) Computer identification of bacteria. Automation, Mechanization and Data Handling in Microbiology, ed. Baillie, A. and Gilbert, R. J., pp. 122. Academic Press, London.Google Scholar
[19] Lapage, S. P., Bascomb, S., Willcox, W. R. and Curtis, M. A. (1973) Identification of bacteria by computer: general aspects and perspectives. J. Gen. Microbiol. 77, 273290.Google Scholar
[20] Maritz, J. S. and Lawin, T. (1989) Empirical Bayes Methods, 2nd edn. Chapman and Hall, London.Google Scholar
[21] Pankhurst, R. J. (1991) Practical Taxonomic Computing. Cambridge University Press.Google Scholar
[22] Plikaytis, B. D., Plikaytis, B. B. and Shinnick, T. (1992) Computer assisted pattern recognition model for the identification of slowly growing Mycobacteria including Mycobacterium tuberculosis. J. Gen. Microbiol. 138, 22652273.CrossRefGoogle ScholarPubMed
[23] Priest, F. G. and Alexander, B. (1993) A frequency matrix for probabilistic identification of some bacilli. J. Gen Microbiol. 134, 30113018.Google Scholar
[24] Sneath, P. H. A. (1974) Test reproducibility. Internat. J. Systematic Bacteriol. 24, 508523.CrossRefGoogle Scholar
[25] Sneath, P. H. A. (1979) Numerical taxonomy and automated identification: some implications for geology. Computers and Geoscience 5, 4246.CrossRefGoogle Scholar
[26] Sneath, P. H. A. (1979) BASIC program for identification of an unknown with presence-absence data against an identification matrix of percent positive characteristics. Computers and Geoscience 5, 195213.CrossRefGoogle Scholar
[27] Sneath, P. H. A. (1979) BASIC program for character separation indices from an identification matrix of percent positive characteristics. Computers and Geoscience 5, 349357.Google Scholar
[28] Sneath, P. H. A. (1979) BASIC program for the most diagnostic properties of groups from an identification matrix of percent positive characteristics. Computers and Geoscience 6, 2126.CrossRefGoogle Scholar
[29] Sneath, P. H. A. (1979) BASIC program for determining the best identification scores possible from the most typical examples when compared with an identification matrix of percent positive characteristics. Computers and Geoscience 6, 2734.Google Scholar
[30] Sneath, P. H. A. (1979) BASIC program for determining the best identification scores possible from the most typical examples when compared with an identification matrix of percent positive characteristics. Computers and Geoscience 6, 2734.Google Scholar
[31] Sneath, P. H. A. and Sokal, R. R. (1973) Numerical Taxonomy. The Principle of Numerical Classification. W. H. Freeman, San Francisco.Google Scholar
[32] Teicher, H. (1967) Identifiability of mixtures of product measures. Ann. Math. Statist. 34, 13001302.Google Scholar
[33] Wayne, L. C., Krichevsky, E. J., Love, E. J., Johnson, L. L. and Krichevsky, ?. I. (1989) Taxonomic probabilities matrix for use with slowly growing Mycobacteria. Internat. J. Systematic Bacteriol. 30, 528538.Google Scholar
[34] Willcox, W. R., Lapage, S. P. and Holmes, B. (1980) A review of numerical methods in bacterial identification. Antonie van Leeuwenhoek 46, 233299.Google Scholar
[35] Williams, S. T., Goodfellow, M., Wellington, E. M., Vickers, J. C., Alderson, G., Sneath, P. H. A., Sackin, M. J. and Mortimer, M. (1983) A probability matrix for identification of some Streptomycetes. J. Gen. Microbiol. 129, 18151830.Google Scholar
[36] Williams, S. T., Goodfellow, M., Alderson, G., Wellington, E. M., Sneath, P. H. A. and Sackin, M. J. (1983) Numerical classification of Streptomyces and related genera. J. Gen. Microbiol. 129, 17431813.Google ScholarPubMed
[37] Wolfe, J. H. (1970) Pattem clustering by multivariate mixture analysis. Multivariate Behavioral Research 5, 329350.Google Scholar
[38] Yakowitz, S. (1970) Unsupervised learning and the identification of finite mixtures. IEEE Trans. Inf. Theory 16, 330338.CrossRefGoogle Scholar
[39] Yakowitz, S. and Spragins, J. D. (1968) On the identifiability of finite mixtures. Ann. Math. Statist. 39, 200214.Google Scholar