Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T22:44:21.391Z Has data issue: false hasContentIssue false

Markov chains and generalized continued fractions

Published online by Cambridge University Press:  14 July 2016

Thomas Hanschke*
Affiliation:
IBM Corporation
*
Postal address: Department 4637, IBM Germany, Hechtsheimer Straße 2, 6500 Mainz, Germany.

Abstract

This paper deals with a class of discrete-time Markov chains for which the invariant measures can be expressed in terms of generalized continued fractions. The representation covers a wide class of stochastic models and is well suited for numerical applications. The results obtained can easily be extended to continuous-time Markov chains.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 1992 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bernstein, L. (1971) The Jacobi-Perron-Algorithm: its Theory and Applications. Lecture Notes in Mathematics 207, Springer-Verlag, Berlin.CrossRefGoogle Scholar
de Bruin, M. G. (1974) Generalized C-fractions and a multidimensional Padé table. , University of Amsterdam.Google Scholar
De Bruin, M. G. (1978) Convergence of generalized C-fractions. J. Approx. Th. 24, 177207.Google Scholar
Gautschi, W. (1972) Zur Numerik rekurrenter Relationen. Computing 9, 107126.Google Scholar
Hanschke, Th. (1978) Die von Bretschneider, Cohen und Schwartzbart/Puri entwickelten Warteschlangenmodelle mit wiederholten Versuchen: Eine Methode zur Berechnung der ergodischen Projektion ihrer Markovschen Warteprozesse und die Simulation der Wartezeiten. , University of Karlsruhe.Google Scholar
Hanschke, Th. (1979) Bestimmung von Grenzwahrscheinlichkeiten bei Warteschlangenmodellen mit Hilfe des Jacobi-Perron-Algorithmus. Berichte der math.-statist. Sektion im Forschungszentrum Graz, No. 126.Google Scholar
Hanschke, Th. (1983) Der einfache Bedienungskanal mit gruppenweiser Abfertigung und zustandsabhängigen Bedienungsraten. In Operations Research Proceedings 1982, pp. 426432, Springer-Verlag, Berlin.Google Scholar
Hanschke, Th. (1989) Minimallösungen und verallgemeinerte Kettenbrüche. ZAMM 69, T124T126.Google Scholar
Jacobi, C. G. J. (1868) Allgemeine Theorie der kettenbruchähnlichen Algorithmen, in welchen jede Zahl aus drei vorhergehenden gebildet wird. J. reine angew. Math. 69, 2964.Google Scholar
Karlin, S. and Taylor, H. M. (1981) A Second Course in Stochastic Processes. Academic Press, New York.Google Scholar
Kendall, D. G. and Reuter, G. E. H. (1957) The calculation of the ergodic projection for Markov chains and processes with a countable infinity of states. Acta Math. 97, 103144.CrossRefGoogle Scholar
Pearce, C. E. M. (1989) Extended continued fractions, recurrence relations and two-dimensional Markov processes. Adv. Appl. Prob. 21, 357375.CrossRefGoogle Scholar
Perron, O. (1907a) Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus. Math. Ann. 64, 176.CrossRefGoogle Scholar
Perron, O. (1907b) über die Konvergenz der Jacobi-Kettenalgorithmen mit komplexen Elementen. Sitzungsber. Akad. München (math.-phys.) 37, 401482.Google Scholar
Perron, O. (1909) über lineare Differenzen- and Differentialgleichungen. Math. Ann. 66, 446487.Google Scholar
Schweiger, F. (1973) The Metrical Theory of Jacobi-Perron-Algorithm. Lecture Notes in Mathematics 334, Springer-Verlag, Berlin.Google Scholar
Seneta, E. (1967) Finite approximations to infinite non-negative matrices. Proc. Camb. Phil. Soc. 63, 983992.Google Scholar
Seneta, E. (1968) Finite approximations to infinite non-negative matrices II. Proc. Camb. Phil. Soc. 64, 465470.Google Scholar
Tweedie, R. L. (1973) The calculation of limit probabilities for denumerable Markov processes from infinitesimal properties. J. Appl. Prob. 10, 8499.Google Scholar
Tweedie, R. L. (1975) Sufficient conditions for regularity, recurrence and ergodicity of Markov processes. Math. Proc. Camb. Phil. Soc. 78, 125136.Google Scholar
Van der Cruyssen, P. (1979) Linear difference equations and generalized continued fractions. Computing 22, 269278.Google Scholar