No CrossRef data available.
Published online by Cambridge University Press: 14 July 2016
Let {X n} be an infinite sequence of independent non-negative random variables. Let the distribution function of Xi , i = 1, 2, …, be either F 1 or F 2 where F 1 and F 2 are distinct. Set Sn = X 1 + X 2 + … + Xn and for t > 0 define and Zt = SN (t)+1 – t. The limit distributions of N(t), Yt and Zt as t → ∞ are obtained when F 1 and F 2 are in the domains of attraction of stable laws with exponents α 1 and α 2 , respectively and Sn properly normalised has the composition of these two stable laws as its limit distribution.