Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T19:59:47.726Z Has data issue: false hasContentIssue false

A large deviation theorem for a supercritical super-Brownian motion with absorption

Published online by Cambridge University Press:  02 May 2023

Yaping Zhu*
Affiliation:
Beijing Normal University
*
*Postal address: School of Mathematical Sciences, Beijing Normal University, Beijing 100875, People’s Republic of China. Email address: zhuyp@mail.bnu.edu.cn

Abstract

We consider a one-dimensional superprocess with a supercritical local branching mechanism $\psi$, where particles move as a Brownian motion with drift $-\rho$ and are killed when they reach the origin. It is known that the process survives with positive probability if and only if $\rho<\sqrt{2\alpha}$, where $\alpha=-\psi'(0)$. When $\rho<\sqrt{2 \alpha}$, Kyprianou et al. [18] proved that $\lim_{t\to \infty}R_t/t =\sqrt{2\alpha}-\rho$ almost surely on the survival set, where $R_t$ is the rightmost position of the support at time t. Motivated by this work, we investigate its large deviation, in other words, the convergence rate of $\mathbb{P}_{\delta_x} (R_t >\gamma t+\theta)$ as $t \to \infty$, where $\gamma >\sqrt{2 \alpha} -\rho$, $\theta \ge 0$. As a by-product, a related Yaglom-type conditional limit theorem is obtained. Analogous results for branching Brownian motion can be found in Harris et al. [13].

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berestycki, J., Berestycki, N. and Schweinsberg, J. (2011). Survival of near-critical branching Brownian motion. J. Statist. Phys. 143, 833854.Google Scholar
Berestycki, J., Berestycki, N. and Schweinsberg, J. (2014). Critical branching Brownian motion with absorption: survival probability. Prob. Theory Relat. Fields 160, 489520.CrossRefGoogle Scholar
Berestycki, J., Kyprianou, A. E. and Murillo-Salas, A. (2011). The prolific backbone for supercritical superprocesses. Stoch. Process. Appl. 121, 13151331.CrossRefGoogle Scholar
Billingsley, P. (1999). Convergence of Probability Measures, 2nd edn. Wiley, New York.CrossRefGoogle Scholar
Borodin, A. N. and Salminen, P. (2002). Handbook of Brownian Motion Facts and Formulae, 2nd edn. Birkhäuser, Basel.CrossRefGoogle Scholar
Chauvin, B. (1991). Product martingales and stopping lines for branching Brownian motion. Ann. Prob. 19, 11951205.Google Scholar
Chauvin, B. and Rouault, A. (1988). KPP equation and supercritical branching Brownian motion in the subcritical speed area: application to spatial trees. Prob. Theory Relat. Fields 2, 299314.Google Scholar
Derbez, E. and Slade, G. (1998). The scaling limit of lattice trees in high dimensions. Commun. Math. Phys. 193, 69104.CrossRefGoogle Scholar
Durrett, R. and Perkins, E. A. (1999). Rescaled contact processes converge to super-Brownian motion in two or more dimensions. Prob. Theory Relat. Fields 144, 309399.CrossRefGoogle Scholar
Dynkin, E. B. (1993). Superprocesses and partial differential equations. Ann. Prob. 21, 11851262.Google Scholar
Engländer, J. (2004). Large deviations for the growth rate of the support of supercritical super-Brownian motion. Statist. Prob. Lett. 4, 449456.Google Scholar
Harris, J. W. and Harris, S. C. (2007). Survival probabilities for branching Brownian motion with absorption. Electron. Commun. Prob. 12, 8192.Google Scholar
Harris, J. W., Harris, S. C. and Kyprianou, A. E. (2006). Further probabilistic analysis of the Fisher–Kolmogorov–Petrovskii–Piscounov equation: one sided travelling-waves. Ann. Inst. H. Poincaré Prob. Statist. 42, 125145.Google Scholar
Hou, H. J., Ren, Y. X. and Song, R. M. (2021). The Seneta–Heyde scaling for supercritical super-Brownian motion. Available at arXiv:2109.04594.Google Scholar
Karatzas, I. and Shreve, S. E. (1988). Brownian Motion and Stochastic Calculus. Springer, New York.Google Scholar
Kesten, H. (1978). Branching Brownian motion with absorption. Stoch. Process. Appl. 7, 947.Google Scholar
Kyprianou, A. E., Liu, R. L., Murillo-Salas, A. and Ren, Y. X. (2012). Supercritical super-Brownian motion with a general branching mechanism and travelling waves. Ann. Inst. H. Poincaré Prob. Statist. 48, 661687.CrossRefGoogle Scholar
Kyprianou, A. E., Murillo-Salas, A. and Pérez, J. L. (2012). An application of the backbone decomposition to supercritical super-Brownian motion with a barrier. J. Appl. Prob. 3, 671684.Google Scholar
Le Gall, J. (1999). Spatial Branching Processes, Random Snakes and Partial Differential Equations (Lectures in Mathematics ETH Zürich). Birkhäuser, Basel.CrossRefGoogle Scholar
Li, Z. H. (1999). A conditional law of super absorbing barrier Brownian motion. Chinese J. Appl. Prob. Statist. 15, 7782.Google Scholar
Li, Z. H. (2011). Measure-Valued Branching Markov Processes. Springer, Berlin.Google Scholar
Li, Z. H. and Zhu, Y. P. (2022). Survival probability for super-Brownian motion with absorption. Statist. Prob. Lett. 186, 109460.Google Scholar
Liu, J. Q. (2021). A Yaglom type asymptotic result for subcritical branching Brownian motion with absorption. Stoch. Process. Appl. 141, 245273.Google Scholar
Liu, R. L., Ren, Y. X., Song, R. M. and Sun, Z. Y. (2021). Subcritical superprocesses conditioned on non-extinction. Available at arXiv:2112.15184.Google Scholar
Maillard, P. and Schweinsberg, J. (2022). Yaglom-type limit theorems for branching Brownian motion with absorption. Ann. H. Lebesgue 5, 921–985.CrossRefGoogle Scholar
Perkins, E. (1999). Dawson–Watanabe Superprocesses and Measure-Valued Diffusions. Springer, Berlin.Google Scholar
Ren, Y. X., Song, R. M. and Zhang, R. (2021). The extremal process of super-Brownian motion. Stoch. Process. Appl. 137, 134.CrossRefGoogle Scholar
Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion, 3rd edn. Springer, Berlin.CrossRefGoogle Scholar
Sheu, Y. C. (1997). Lifetime and compactness of range for super-Brownian motion with a general branching mechanism. Stoch. Process. Appl. 70, 129141.CrossRefGoogle Scholar