Hostname: page-component-54dcc4c588-hp6zs Total loading time: 0 Render date: 2025-10-03T21:19:50.980Z Has data issue: false hasContentIssue false

Integral stochastic orders with parametric classes of functions

Published online by Cambridge University Press:  01 October 2025

Qi Feng*
Affiliation:
Purdue University
J. George Shanthikumar*
Affiliation:
Purdue University
*
*Postal address: Mitch Daniels School of Business, Purdue University, 100 S. Grant Street,West Lafayette, IN 47907, USA.
***Email address: shanthikumar@purdue.edu

Abstract

This paper introduces the general ideas for parametric integral stochastic orders, with which a continuum of parametric functions are defined as a bridge between different classes of non-parametric functions. This approach allows one to identify a parametric function class over which two given random variables may violate the non-parametric stochastic order with specific patterns. The parameter used to name the parametric function class also measures the ratio of dominance violation for the corresponding non-parametric stochastic orders. Our framework, expanding the domain of stochastic orders, covers the existing studies of almost stochastic dominance. This leads to intuitive explanations and simpler proofs of existing results and their extensions.

Information

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Azmoodeh, E. and Hür, O. (2023). Multi-fractional stochastic dominance: Mathematical foundations. Available at arXiv:2307.08651.Google Scholar
Denuit, M. and Müller, A. (2002). Smooth generators of integral stochastic orders. Ann. Appl. Prob. 12, 11741184.10.1214/aoap/1037125858CrossRefGoogle Scholar
Feng, Q. and Shanthikumar, J. G. (2022). Applications of stochastic orders and stochastic functions in inventory and pricing problems. Prod. Operat. Manag. 31, 14331453.10.1111/poms.13629CrossRefGoogle Scholar
Guo, X., Zhu, X., Wong, W.-K. and Zhu, L. (2013). A note on almost stochastic dominance. J. Math. Economics 121, 252256.Google Scholar
Huang, R. J., Tzeng, L. Y. and Zhao, L. (2020). Fractional degree stochastic dominance. Manag. Sci. 66, 46304647.10.1287/mnsc.2019.3406CrossRefGoogle Scholar
Klar, B. and Müller, A. (2019). On consistency of the omega ratio with stochastic dominance rule. In Proceedings of the Innovations in Insurance, Risk- and Asset Management Conference: Innovations in Insurance, Risk- and Asset Management, eds K. Glau et al., pp. 367380. World Scientific.Google Scholar
Leshno, M. and Levy, H. (2002). Preferred by ‘All’ and preferred by ‘Most’ decision makers: Almost stochastic dominance. Manag. Sci. 48, 9551101.Google Scholar
Levy, H. (2009). Almost stochastic dominance and stocks for the long run. Europ. J. Operat. Res. 194, 250257.10.1016/j.ejor.2007.12.017CrossRefGoogle Scholar
Levy, H. (2012). Almost stochastic dominance and stocks for the long run. Amer. J. Operat. Res. 2, 313321.10.4236/ajor.2012.23038CrossRefGoogle Scholar
Levy, H., Leshno, M. and Leibovitch, B. (2010). Economically relevant preferences for all observed epsilon. Ann. Operat. Res. 196, 153178.10.1007/s10479-008-0470-7CrossRefGoogle Scholar
Light, B. and Perlroth, A. (2021). The family of $\alpha,[a,b]$ stochastic orders: Risk vs. expected value. J. Math. Economics 96, 102520. Google Scholar
Lizyayev, A. and Ruszczyński, A. (2012). Tractable almost stochastic dominance. Europ. J. Operat. Res. 218, 448455.10.1016/j.ejor.2011.11.019CrossRefGoogle Scholar
Lu, H., Zhang, Y., Xiao, L. and Dhesi, G. (2022). A state-of-the-art fund performance index: Higher-order omega and its consistency with almost stochastic dominance. J. Risk Financial Manag. 15, 438459.10.3390/jrfm15100438CrossRefGoogle Scholar
Luo, C. and Tan, C. H. (2020). Almost stochastic dominance for most risk-averse decision makers. Decis. Analysis 17, 97185.Google Scholar
Mao, T., Wang, R. and Zhao, L. (2022). Characterizing fractional degree stochastic dominance by invariance laws. Available at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4288072.Google Scholar
Mao, T., Wu, Q. and Hu, T. (2022). Further properties of fractional stochastic dominance. J. Appl. Prob. 59, 202223.10.1017/jpr.2021.44CrossRefGoogle Scholar
Müller, A. and Stoyan, D. (2002). Comparison Methods for Stochastic Models and Risks. Wiley, Chichester.Google Scholar
Müller, A., Scarsini, M., Tsetlin, I. and Winkler, R. L. (2017). Between first- and second-order stochastic dominance. Manag. Sci. 63, 29332947.10.1287/mnsc.2016.2486CrossRefGoogle Scholar
Müller, A., Scarsini, M., Tsetlin, I. and Winkler, R. L. (2022). Ranking distributions when only means and variances are known. Operat. Res. 70, 25973033.10.1287/opre.2020.2072CrossRefGoogle Scholar
Pomatto, L., Strack, P. and Tamuz, O. (2020). Stochastic dominance under independent noise. J. Political Econom. 128, 18771900.10.1086/705555CrossRefGoogle Scholar
Shaked, M. and Shanthikumar, J. G. (2007). Stochastic Orders. Springer, New York.10.1007/978-0-387-34675-5CrossRefGoogle Scholar
Stoyanov, S. V., Rachev, S. T. and Fabozzi, F. J. (2012). Metrization of stochastic dominance rules. Internat. J. Theoret. Appl. Finance 15, 1250017.10.1142/S0219024912500173CrossRefGoogle Scholar
Tsetlin, I., Winkler, R. L., Huang, R. J. and Tzeng, L. Y. (2015). Generalized almost stochastic dominance. Operat. Res. 63, 363377.10.1287/opre.2014.1340CrossRefGoogle Scholar
Tzeng, L., Huang, R. J. and Shih, P.-T. (2013). Revisiting almost second-degree stochastic dominance. Manag. Sci. 59, 12501254.10.1287/mnsc.1120.1616CrossRefGoogle Scholar
Yang, J., Zhou, T. and Zhuang, W. (2022). Almost first-order stochastic dominance by distorted expectations. Prob. Eng. Inf. Sci. 37, 20182051.Google Scholar
Zhao, F., Gao, J. and Gu, Y. (2018). Almost first-degree stochastic dominance for transformations and its application in insurance strategy. Economics 12, 20182051.10.5018/economics-ejournal.ja.2018-51CrossRefGoogle Scholar