Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T08:59:57.085Z Has data issue: false hasContentIssue false

Geometric bounds on certain sublinear functionals of geometric Brownian motion

Published online by Cambridge University Press:  14 July 2016

Per Hörfelt*
Affiliation:
Chalmers University of Technology
*
Postal address: Department of Mathematics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden. Email address: perh@math.chalmers.se

Abstract

Suppose that {Xs, 0 ≤ sT} is an m-dimensional geometric Brownian motion with drift, μ is a bounded positive Borel measure on [0,T], and ϕ : ℝm → [0,∞) is a (weighted) lq(ℝm)-norm, 1 ≤ q ≤ ∞. The purpose of this paper is to study the distribution and the moments of the random variable Y given by the Lp(μ)-norm, 1 ≤ p ≤ ∞, of the function sϕ(Xs), 0 ≤ sT. By using various geometric inequalities in Wiener space, this paper gives upper and lower bounds for the distribution function of Y and proves that the distribution function is log-concave and absolutely continuous on every open subset of the distribution's support. Moreover, the paper derives tail probabilities, presents sharp moment inequalities, and shows that Y is indetermined by its moments. The paper will also discuss the so-called moment-matching method for the pricing of Asian-styled basket options.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 2003 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alili, L. (1995). Fonctionnelles exponentielles et valeurs principales du mouvement Brownien. Doctoral Thesis, Université Paris VI.Google Scholar
Barouch, E., Kaufman, G. M., and Glasser, M. L. (1986). On sums of lognormal random variables. Stud. Appl. Math. 75, 3755.Google Scholar
Bhattacharya, R., Thomann, E., and Waymire, E. (2001). A note on the distribution of integrals of geometric Brownian motion. Statist. Prob. Lett. 55, 187192.CrossRefGoogle Scholar
Borell, C. (1974). Convex measures on locally convex spaces. Ark. Mat. 12, 239252.Google Scholar
Borell, C. (1975). The Brunn—Minkowski inequality in Gauss space. Invent. Math. 30, 207216.Google Scholar
Borell, C. (1975). Convex set functions in d-space. Period. Math. Hungar. 6, 111136.CrossRefGoogle Scholar
Brigo, D., Mercurio, F., Rapisarda, F., and Scotti, R. (2001). Approximated moment-matching dynamics for basket-options simulation. Working paper, Banca IMI.Google Scholar
Comtet, A., and Monthus, C. (1996). Diffusion in one-dimensional random medium and hyperbolic Brownian motion. J. Phys. A 29, 13311345.CrossRefGoogle Scholar
Donati-Martin, C., Matsumoto, H., and Yor, M. (2000). On positive and negative moments of the integral of geometric Brownian motion. Statist. Prob. Lett. 49, 4552.CrossRefGoogle Scholar
Dufresne, D. (2000). Laguerre series for Asian and other options. Math. Finance 10, 407428.CrossRefGoogle Scholar
Dufresne, D. (2001). The integral of geometric Brownian motion. Adv. Appl. Prob. 33, 223241.Google Scholar
Heyde, C. C. (1963). On a property of the lognormal distribution. J. R. Statist. Soc. B 25, 392393.Google Scholar
Hoffmann-Jörgensen, J., Shepp, L. A., and Dudley, R. M. (1979). On the lower tail of Gaussian seminorms. Ann. Prob. 7, 319342.Google Scholar
Hörfelt, P. (2002). On the error in the Monte Carlo pricing of some familiar European path-dependent options. Working paper, Chalmers University of Technology.Google Scholar
Janos, W. (1970). Tail of the distribution of sums of log-normal variates. IEEE Trans. Inf. Theory 3, 299302.Google Scholar
Kuelbs, J., and Li, W. (1998). Some shift inequalities for Gaussian measures. In High Dimensional Probability (Progress Prob. 43), Birkhäuser, Basel, pp. 233243.Google Scholar
Linetsky, V. (2001). Spectral expansions for Asian (average price) options. Working paper, Northwestern University.Google Scholar
Nikeghbali, A. (2002). Moment problem for some convex functionals of Brownian motion and related problems. Prépublication Probabilités et Modèles Aléatoires 706, Université Paris VI.Google Scholar
Pakes, A. G. (2001). Remarks on converse Carleman and Krein criteria for the classical moment problem. J. Austral. Math. Soc. 71, 81104.Google Scholar
Rogers, L. C. G., and Shi, Z. (1995). The value of an Asian option. J. Appl. Prob. 32, 10771088.Google Scholar
Sudakov, V. N. and Cirelśon, B. S. (1974). Extremal properties of half-spaces for spherically invariant measures. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 41, 14–24 (in Russian). English translation: (1978) J. Sov. Math. 9, 918.Google Scholar
Yor, M. (2001). Exponential Functionals of Brownian Motion and Related Processes. Springer, Berlin.CrossRefGoogle Scholar