Published online by Cambridge University Press: 14 July 2016
The maxima of independent Weiner processes spatially normalized with time scales compressed is considered and it is shown that a weak limit process exists. This limit process is stationary, and its one-dimensional distributions are of standard extreme-value type. The method of proof involves showing convergence of related point processes to a limit Poisson point process. The method is extended to handle the maxima of independent Ornstein–Uhlenbeck processes.
Support provided by NSF Grant OIP 75–14513 while on leave from Stanford University. The hospitality of CSIRO, Division of Mathematics and Statistics, Canberra and the Department of Statistics, SGS, Australian National University is gratefully acknowledged.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.