Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T23:47:17.886Z Has data issue: false hasContentIssue false

The elephant random walk in the triangular array setting

Published online by Cambridge University Press:  16 January 2025

Rahul Roy*
Affiliation:
Indian Statistical Institute and Indraprastha Institute of Information Technology, Delhi
Masato Takei*
Affiliation:
Yokohama National University
Hideki Tanemura*
Affiliation:
Keio University
*
*Postal address: 7 SJS Sansanwal Marg, New Delhi 110016, India. Email: rahul@isid.ac.in
**Postal address: 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan. Email: takei-masato-fx@ynu.ac.jp
***Postal address: 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan. Email: tanemura@math.keio.ac.jp

Abstract

Gut and Stadmüller (2021, 2022) initiated the study of the elephant random walk with limited memory. Aguech and El Machkouri (2024) published a paper in which they discuss an extension of the results by Gut and Stadtmüller (2022) for an ‘increasing memory’ version of the elephant random walk without stops. Here we present a formal definition of the process that was hinted at by Gut and Stadtmüller. This definition is based on the triangular array setting. We give a positive answer to the open problem in Gut and Stadtmüller (2022) for the elephant random walk, possibly with stops. We also obtain the central limit theorem for the supercritical case of this model.

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguech, R. and El Machkouri, M. (2024). Gaussian fluctuations of the elephant random walk with gradually increasing memory. J. Phys. A 57, 065203. Corrigendum, J. Phys. A 57, 349501.CrossRefGoogle Scholar
Azuma, K. (1967). Weighted sums of certain dependent random variables. Tôhoku Math. J. (2) 19, 357367.CrossRefGoogle Scholar
Baur, E. and Bertoin, J. (2016). Elephant random walks and their connection to Pólya-type urns. Phys. Rev. E 94, 052134.CrossRefGoogle ScholarPubMed
Bercu, B. (2018). A martingale approach for the elephant random walk. J. Phys. A 51, 015201.CrossRefGoogle Scholar
Bercu, B. (2022). On the elephant random walk with stops playing hide and seek with the Mittag–Leffler distribution. J. Statist. Phys. 189, 12.CrossRefGoogle Scholar
Coletti, C. F., Gava, R. J. and Schütz, G. M. (2017). Central limit theorem for the elephant random walk. J. Math. Phys. 58, 053303.CrossRefGoogle Scholar
Coletti, C. F., Gava, R. J. and Schütz, G. M. (2017). A strong invariance principle for the elephant random walk. J. Statist. Mech. 2017, 123207.CrossRefGoogle Scholar
Guérin, H., Laulin, L. and Raschel, K. (2023). A fixed-point equation approach for the superdiffusive elephant random walk. Preprint, arXiv:2308.14630.Google Scholar
Gut, A. and Stadtmüller, U. (2021). Variations of the elephant random walk. J. Appl. Prob. 58, 805829.CrossRefGoogle Scholar
Gut, A. and Stadtmüller, U. (2022). The elephant random walk with gradually increasing memory. Statist. Prob. Lett. 189, 109598.CrossRefGoogle Scholar
Kubota, N. and Takei, M. (2019). Gaussian fluctuation for superdiffusive elephant random walks. J. Statist. Phys. 177, 11571171.CrossRefGoogle Scholar
Kumar, N., Harbola, U. and Lindenberg, K. (2010). Memory-induced anomalous dynamics: Emergence of diffusion. Phys. Rev. E 82, 021101.CrossRefGoogle ScholarPubMed
Laulin, L. (2022). Autour de la marche aléatoire de l’éléphant [About the elephant random walk]. Thesis, Université de Bordeaux.Google Scholar
Qin, S. (2023). Recurrence and transience of multidimensional elephant random walks. Preprint, arXiv:2309.09795.Google Scholar
Schütz, G. M. and Trimper, S. (2004). Elephants can always remember: Exact long-range memory effects in a non-Markovian random walk. Phys. Rev. E 70, 045101.CrossRefGoogle Scholar