Published online by Cambridge University Press: 19 September 2024
Novel prediction methods should always be compared to a baseline to determine their performance. Without this frame of reference, the performance score of a model is basically meaningless. What does it mean when a model achieves an $F_1$ of 0.8 on a test set? A proper baseline is, therefore, required to evaluate the ‘goodness’ of a performance score. Comparing results with the latest state-of-the-art model is usually insightful. However, being state-of-the-art is dynamic, as newer models are continuously developed. Contrary to an advanced model, it is also possible to use a simple dummy classifier. However, the latter model could be beaten too easily, making the comparison less valuable. Furthermore, most existing baselines are stochastic and need to be computed repeatedly to get a reliable expected performance, which could be computationally expensive. We present a universal baseline method for all binary classification models, named the Dutch Draw (DD). This approach weighs simple classifiers and determines the best classifier to use as a baseline. Theoretically, we derive the DD baseline for many commonly used evaluation measures and show that in most situations it reduces to (almost) always predicting either zero or one. Summarizing, the DD baseline is general, as it is applicable to any binary classification problem; simple, as it can be quickly determined without training or parameter tuning; and informative, as insightful conclusions can be drawn from the results. The DD baseline serves two purposes. First, it is a robust and universal baseline that enables comparisons across research papers. Second, it provides a sanity check during the prediction model’s development process. When a model does not outperform the DD baseline, it is a major warning sign.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.